MANONMANIAM SUNDARANAR UNIVERSITY

DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 627012, TAMIL NADU

M.Sc. MATHEMATICS - I YEAR

DKM12 - REAL ANALYSIS (From the academic year 2016-17)

Most Student friendly University - Strive to Study and Learn to Excel

For more information visit: *http://www.msuniv.ac.in*

M.Sc. MATHEMATICS - I YEAR

DKM12 : REAL ANALYSIS SYLLABUS

Unit I :

Basic topology – Metric spaces – compact sets – perfect sets – connected sets - convergent sequences – subsequences – upper and lower limits – some special sequences. [Chapter 2-2.1 to 2.45, chapter 3-3.1 to 3.20]

Unit II :

Series – Series of non-negative terms – The number e – The root and ratio tests – Power series – summation by parts – Absolute convergence – Addition and multiplication of series. [Chapter 3-3.21 to 3.50]

Unit III :

Continuity and Differentiation - Limit of functions – Continuous functions – Continuity and compactness – Continuity and connectedness – Monotonic functions – Infinite limits and limits at infinity – Differentiation – Mean value theorems – Continuity of Derivatives – L'Hospital rule – Taylor's theorem. [Chapter 4-4.1 to 4.34 & Chapter 5.1 to 5.15]

Unit IV :

<u>The Riemann–Steiltjes integral and Sequences and series of functions</u> – Existence of the integral – Properties of the integral – Integration and Differentiation – Integratin of vector–valued functions - Uniform convergence – Uniform convergence and continuity – Uniform convergence and intergration. [Chapter 6-6.1 to 6.25 & Chapter 7-7.1 to 7.16]

Unit V:

Uniform Convergence and differentiation – Equicontinuity – Equicontinuous families of functions – Stone Weierstrass' theorem – some special functions. [Chapter 7-7.17 to 7.26 & Chapter 8.1 to 8.6]

Text :

Rudin - Principles of Mathematical Analysis (Tata McGrows Hill) Third Edition, Chapters 2 to 8.

1. UNIT I

Basic Topology

Definition 1.1 Metric space: A set $X \neq \emptyset$ whose elements we shall called points is said to be a metric space if with any two points p, q of X there is associated a real number d(p,q), called the distance from p to q, such that

- 1. d(p,q) > 0 if $p \neq q$,
- $2. \ d(p,q) = d(q,p) \quad \forall p,q \in X,$
- 3. $d(p,q) \leq d(p,r) + d(r,p) \quad \forall p,q,r \in X \text{ (Triangle inequality),}$
- 4. d(p,q) = 0 if p = q.

Note 1.2 Any function with these three properties is called a distance function (or) metric.

Example 1.3 1. \mathbb{R}^1 with usual metric d(x, y) = |x - y| is a metric space. 2. The euclidean space $\mathbb{R}^k = \{(x_1, x_2, ..., x_k) = \bar{x} | x_i \in \mathbb{R}^1\}$ with usual metric

$$d(\bar{x}, \bar{y}) = |\bar{x} - \bar{y}| = \sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}, \bar{x}, \bar{y} \in \mathbb{R}^k$$

Note 1.4 Usually a non-empty set X with a metric d denoted by (X, d) is called as metric space.

Remark 1.5 Every subset Y of a metric space X is a metric space (with the same metric of) in its own right. For if conditions 1, to 4, of the Definition 1.1 hold for $p, q, r \in X$, then they also hold if you restrict p, q, r to lie in Y.

Definition 1.6 1. $(a, b) = \{x | a < x < b\}$ - segment.

- 2. $[a,b] = \{x | a \le x \le b\}$ interval.
- 3. $(a, b] = \{x | a < x \le b\}$ Half open interval.
- 4. $[a,b) = \{x | a \leq x < b\}$ Half open interval.

Definition 1.7 *k-cell:* If $a_i < b_i$ i = 1, 2, ..., k then $\{\bar{x} = (x_1, ..., x_2) | a \le x_i \le b_i, i = 1, 2, ..., k\}$ is called a k-cell.

Note 1.8 One-cell is a interval. Two cell is a rectangle. Three cell is cuboid.

Definition 1.9 Convex Set: A set E subset of \mathbb{R}^k is convex if $\lambda \bar{x} + (1 - \lambda)\bar{y} \in E$ whenever $\bar{x}, \bar{y} \in E$ and $0 < \lambda < 1$.

Definition 1.10 Open ball: If $\bar{x} \in \mathbb{R}^k$, r > 0, the open ball or (closed ball) B with center at \bar{x} and radius r is defined to be the set $\{\bar{y} \in \mathbb{R}^k | |\bar{x} - \bar{y}| < r\}$ or $\{\bar{y} \in \mathbb{R}^k | |\bar{x} - \bar{y}| \leq r\}$.

> *i.e.*, open ball $B(\bar{x}, r) = \{\bar{y} \in \mathbb{R}^k | |\bar{x} - \bar{y}| < r\}$ closed ball $B[\bar{x}, r] = \{\bar{y} \in \mathbb{R}^k | |\bar{x} - \bar{y}| \le r\}$

Lemma 1.11 Balls are convex.

Proof: Let $B(\bar{x}, r)$ be a open ball and let \bar{y}, \bar{z} lie in a open ball B. $\Rightarrow |\bar{y} - \bar{x}| < r$ and $|\bar{z} - \bar{x}| < r$

$$0 \leq \lambda \leq 1 \Rightarrow 0 \leq 1 - \lambda \Rightarrow |\lambda \bar{y} + (1 - \lambda)\bar{z} - \bar{x}|$$

= $|\lambda \bar{y} + (1 - \lambda)\bar{z} - (\lambda \bar{x} + (1 - \lambda)\bar{x})|$
= $|\lambda(\bar{y} - \bar{x}) + (1 - \lambda)(\bar{z} - \bar{x})|$
 $\leq \lambda |\bar{y} - \bar{x}| + (1 - \lambda) |\bar{z} - \bar{x}|$
 $< \lambda r + (1 - \lambda)r = r$
 $\Rightarrow \lambda |\bar{y} + (1 - \lambda)\bar{z} - \bar{x}| < r$
 $\Rightarrow \lambda \bar{y} + (1 - \lambda)\bar{z}$ lies in the open ball *B*.

 \Rightarrow Every open ball is convex. Similarly every closed ball is convex.

Note 1.12 Every k-cell is convex.

Definition 1.13 Neighbourhood of a point: Let X be a metric space. The neighbourhood a point p is $=\{q \in X | d(p,q) < r\}$ and is denoted by $N_r(p)$.

Note 1.14 $N_r(p) = (p - r, p + r)$ in \mathbb{R} .

Definition 1.15 *Limit point:* Let $p \in X$ and $E \subset X$. The point p is said to be the limit point of E, if every neighbourhood of p contains a point q of E other than p.

Note 1.16 *p* is a limit point of $E \Rightarrow N_r(p) \cap E - \{p\} \neq \emptyset \ \forall r > 0$.

Example 1.17 $A = \{0, 1, 1/2, ...\}; N_r(0) = (-r, r) \forall r > 0.$ By Archimedian principle $\forall r > 0$ there exists an +ve integer n such that $n \cdot r > 1$

$$\Rightarrow r > 1/n$$

$$\Rightarrow r > 1/n$$

$$\Rightarrow 0 < 1/n < r$$

$$\Rightarrow 1/n \in (-r, r)$$

$$\Rightarrow (A - \{0\}) \cap (-r, r) \neq \emptyset$$

$$\Rightarrow (A - \{0\}) \cap N_r(0) \neq \emptyset \ \forall r > 0$$

$$\Rightarrow 0 \ is \ a \ limit \ point \ of \ A.$$

Clam: 1 is not a limit point. Consider $N_{1/4}(1) = (1 - 1/4, 1 + 1/4) = (3/4, 5/4)$. $\therefore (3/4, 5/4) \cap (A - \{0\}) = \emptyset$ (i.e.), $N_{1/4}(1) \cap (A - \{1\}) = \emptyset \Rightarrow 1$ is not a limit point of A. Similarly we can prove that 1/n is not a limit point $\forall n \in N$. Hence 0 is the only limit point of A.

Definition 1.18 Isolated point: Let X be a metric space and E subset of X. If a point $p \in E$ is not a limit point of E. Then we say that p is an isolated point of E. In the above example 1, 1/2, 1/3, ... are the isolated point of A.

Definition 1.19 Closed set: Let X be a metric space and $E \subset X, E$ is said to be closed in X, if every limit point of E is a point of E. In the previous example A is closed in R since $\{0\} \subset A$.

Definition 1.20 Interior point: Let X be a metric space and $E \subset C$. A point p is an interior point of E. If there exists neighbourhood N(p) such that N is contained in $E(N \subset E)$.

Definition 1.21 *Open set:* Let X be a metric space and $E \subset X$. E is said to be open in X if every point of E is an interior point of E.

Note 1.22 Let E' denote the set of all limit points of E. Let E° denote the set of all interior points of $E.E^{\circ} \subseteq E$ always. E is closed if $E' \subset E$ and E is open if $E = E^{\circ}$.

Definition 1.23 *Perfect set:* Let X be a metric space and $E \subset X.E$ is said to be perfect in X if E is closed and if every point of E is a limit point of E.

Note 1.24 E is perfect if E = E'.

Definition 1.25 Complement of a set: Complement of a set is defined as $E^c = \{p \in X | p \notin E\}.$

Definition 1.26 Bounded Set: Let X be a metric space and $E \subset X$. E is said to be bounded in X if there exists a real number M and a point $q \in X$ such that $d(p,q) < M \ \forall p \in E$.

Definition 1.27 Dense Set: E is dense in X if every point of X is a limit point of E or a point of E or both. If E is dense in X, then $X = \overline{E} = E \cup E'$.

Example 1.28 Q is dense in R.

Theorem 1.29 Every neighbourhood is an open set.

Proof: Consider a neighbourhood $N_r(p)$ (neighbourhood of p with radius r > 0). To prove: $N_r(p)$ open. Let $q \in N_r(p)$. Enough to prove: q is an interior point of N_r . Now $q \in N_r(p) \Rightarrow d(p,q) < r$. Let S = r - d(p,q). Claim: $N_S(q) \subset N_r(p)$

 $r \in N_{S}(q)$ $\Rightarrow d(r,q) < S = r - d(p,q)$ $\Rightarrow d(p,q) + d(r,q) < r$ $\Rightarrow d(p,r) < r$ $\Rightarrow r \in N_{r}(p)$ $\therefore N_{S} \subset N_{r}(p)$

Hence the claim. That is an interior pt of $N_r(p)$. Since q is an arbitrary. Every point of $N_r(p)$ is an interior point. $\Rightarrow N_r(p)$ is open. \therefore Every neighbourhood is open.

Theorem 1.30 If p is a limit point of E. Then every neighbourhood of p contains infinitely many points of E.

Proof: Suppose there exists a neighbourhood N of p contains only finitely many points of E.

Let $q_1, q_2, ..., q_n$ be those points of E in N differ from p. $\{q_1, q_2, ..., q_n \in (N \cap E - \{p\})$. Let $r = min\{d(p, q_i) | i = 1...n\}$. Clearly, r > 0. Now the neighbourhood $N_r(p)$ contains no point q of E. such that $q \neq p$. Then p is not a limit point of E which is a contradiction to p is a limit point of E. \therefore Every neighbourhood of p contains infinitely many points of E.

Corollary 1.31 Any finite set has no limit point.

Proof: Let X be a metric space and $E \subset X$ be a finite set. To prove: E has no limit points. If p is limit point of E. Then every neighbourhood of p contains infinitely many points of E.(by above theorem) This is a contradiction to E is a finite set. Hence a finite set has no limit point.

Theorem 1.32 Let $\{E_{\alpha}\}$ be a (finite or infinite) collection of set E_{α} . Then $(\bigcup E_{\alpha})^c = \bigcap E_{\alpha}^c$. **Proof:** Let $x \in (\bigcup E_{\alpha})^c$.

$$\Leftrightarrow x \notin \bigcup E_{\alpha}$$
$$\Leftrightarrow x \notin E_{\alpha} \forall \alpha$$
$$\Leftrightarrow x \in E_{\alpha}^{c} \forall \alpha$$
$$\Leftrightarrow x \in \bigcap E_{\alpha}^{c}$$
$$\therefore (\bigcup E_{\alpha})^{c} = \bigcap E_{c}^{\alpha}$$

Theorem 1.33 A set E is an open iff its complement is closed.

Proof: Let *E* be an open set. To prove: E^c is closed. Let *q* be a limit point of $E^c \Rightarrow$ Every neighbourhood of *q* contains atleast one point *p* of E^c such that $p \neq q$. $\Rightarrow q$ is not an interior point of *E*. (:: E is open) ($:: N_r(q) \cap E^c - \{q\} \neq \emptyset \ \forall r > 0$ (i.e.), $N_r(q) \notin E \ \forall r > 0$) $\Rightarrow q \notin E \Rightarrow$ $q \in E^c$. Since *q* is arbitrary. E^c contains all its limit point. $:: E^c$ is closed. Conversely, let E^c be closed. To prove: *E* is open. Let $q \in E$. To prove: *q* is an interior point of *E*. Since $q \in E \Rightarrow q \notin E^c \Rightarrow q$ is not a limit point of E^c . Which implies, there exists neighbourhood of *N* of *q* such that $N \cap (E^c - \{q\}) = \emptyset$ (i.e.) $N \cap E^c = \emptyset(:: q \notin E^c) \Rightarrow N \subset E \Rightarrow q$ is an interior point of *E*. Since *q* is arbitrary. Every point of *E* is an interior point of $E. \Rightarrow E$ is open.

Corollary 1.34 A set F is closed iff its complement is open. **Proof:** $F = (F^c)^c$ is closed. $\Leftrightarrow F^c$ is open. (by previous theorem)

Theorem 1.35 (a) For any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open (or) Arbitrary union of open sets is open.

(b) For any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed (or) Arbitrary intersection of closed sets is closed.

(c) For any finite collection $\{G_1, G_2, ..., G_n\}$ of open sets $\bigcap_{i=1}^n$ is open (or) Finite intersection of open sets is open.

(d) For any finite collection $\{F_1, F_2, ..., F_n\}$ of closed sets $\bigcup_{i=1}^n F_i$ is closed (or) Finite union of closed sets is closed.

Proof: (a) To prove: $\bigcup_{\alpha} G_{\alpha}$ is open where each G_{α} is open. Let $p \in \bigcup_{\alpha} G_{\alpha} \Rightarrow p \in G_{\alpha}$ for some $\alpha \Rightarrow$ there exists a neighbourhood N of p such that $N \subset G_{\alpha}$ ($\because G_{\alpha}$ is open) $\Rightarrow N \subset G_{\alpha} \subset \bigcup_{\alpha} G_{\alpha} \Rightarrow N \subset \bigcup_{\alpha} G_{\alpha} \Rightarrow p$ is an interior point of $\bigcup_{\alpha} G_{\alpha}$. Since p is arbitrary, every point of $\bigcup_{\alpha} G_{\alpha}$ is an interior point. $\Rightarrow \bigcup_{\alpha} G_{\alpha}$ is open.

(b) To prove: $\bigcap_{\alpha} F_{\alpha}$ is closed where each F_{α} is closed $\forall \alpha$. (i.e.) To prove $(\bigcap_{\alpha} F_{\alpha})^c$ is open. $(\bigcap_{\alpha} F_{\alpha})^c = \bigcup_{\alpha} F_{\alpha}^c$. F_{α} is closed $\Rightarrow F_{\alpha}^c$ is open. By (a) $\bigcup_{\alpha} F_{\alpha}^c$ is open. $\Rightarrow (\bigcap_{\alpha} F_{\alpha})^c$ is open. $\Rightarrow \bigcap_{\alpha} F_{\alpha}$ is closed.

(c) To prove: $\bigcap_{i=1}^{n} G_i$ is open when G_i is open $\forall i = 1, ..., n$. Let $x \in \bigcap_{i=1}^{n} G_i \Rightarrow x \in G_i \ \forall i = 1$ to n. For each i, there exists a neighbourhood $N_{r_i}(x)$ such that $N_{r_i}(x) \subset G_i \ \forall i = 1, 2, ..., n(\because G_i \text{ is open})$. Let $r = \min\{r_1, r_2, ..., r_n\} \Rightarrow N_r(x) \subset N_{r_i}(x) \ \forall i \Rightarrow N_r(x) \subset G_i \ \forall i \Rightarrow N_r(x) \subset \bigcap_{i=1}^{n} G_i \Rightarrow x \text{ is an interior point of } \bigcap_{i=1}^{n} G_i$. Since x is arbitrary, every point of $\bigcap_{i=1}^{n} G_i$ is open.

(d) To prove: $\bigcup_{i=1}^{n} F_i$ is closed when F_i is closed $\forall i$. (i.e.) To prove $(\bigcup_{i=1}^{n} F_i)^c$ is open. $(\bigcup_{i=1}^{n} F_i)^c = \bigcup_{i=1}^{n} F_i^c$. Now, $\forall i F_i$ is closed $\Rightarrow F_i^c$ is open. By (c), $\bigcap_{i=1}^{n} F_i^c$ is open. $\Rightarrow (\bigcup_{i=1}^{n} F_i)^c$ is open. $\Rightarrow \bigcup_{i=1}^{n} F_i$ is closed.

Note 1.36 Arbitrary intersection of open sets need not be open.

Example 1.37 Consider $G_n = (-1/n, 1/n)$ in R with usual metric. $\Rightarrow G_n$ is open $\forall n$. Now, $\bigcap_{n=1}^{\infty} G_n = \bigcap_{n=1}^{\infty} (-1/n, 1/n) = \{0\}$ is not open.

Result 1.38 Arbitrary Union of closed sets need not be closed.

Proof: Consider $F_n = (-\alpha, -1/n) \cup (1/n, \alpha) \forall n$. (i.e.) $F_n^c = (-1/n, 1/n) \forall n$ $\Rightarrow F_n^c$ is open $\Rightarrow F_n$ is closed $\forall n$. Now, $(\bigcup_{n=1}^{\infty} F_n)^c = \bigcap_{n=1}^{\infty} F_n^c = \bigcap_{n=1}^{\infty} (-1/n, 1/n) = \{0\}$ is not open in R. $\Rightarrow (\bigcup F_n)^c$ is not open in R. $\Rightarrow \bigcup F_n$ is not closed in R.

Definition 1.39 If X is a metric space and $E \subset X$ and if E' denotes the set of all limit points of E in X. Then the closure of E is the set $\overline{E} = E \cup E'$.

Theorem 1.40 If X is a metric space and $E \subset X$. Then

- 1. E is closed.
- 2. $E = \overline{E}$ iff E is closed.
- 3. $\overline{E} \subset F_{\alpha} \forall$ closed set $F_{\alpha} \subset X$ such that $E \subset F_{\alpha}$.

Proof: (1) To prove: \overline{E} is closed. (i.e.) To prove \overline{E}^c is open. Let $p \in \overline{E}^c$ $\Rightarrow p \in E^c \cap E'^c \Rightarrow p \in E^c$ and $p \in E'^c$ ($:: \overline{E} = E \cup E' \overline{E}^c = E^c \cap (E')^c$) $\Rightarrow p \notin E$ and $p \notin E' \Rightarrow p \notin E$ and p is not a limit point of E \Rightarrow there exists a neighbourhood N of p such that $N \cap (E - \{p\}) = \emptyset$ and $p \notin E$

 $\Rightarrow N \cap E = \emptyset \dots (1)$

 \Rightarrow every point of N is not a limit point of E (: N is open) $\Rightarrow N \subset E'^c$. From (1), $N \subset E^c \Rightarrow N \subset \overline{E}^c \cap E^c = (E \cup E')^c = \overline{E}^c \Rightarrow N \subset \overline{E}^c$

 $\Rightarrow p$ is an interior point of $\overline{E}^c \Rightarrow$ Since p is an arbitrary. \therefore Every point of \overline{E}^c is an interior point. $\Rightarrow \overline{E}^c$ is open. $\Rightarrow \overline{E}$ is closed.

(2) E is closed. $\Rightarrow E' \subset E \Rightarrow E \cup E' \subset E \Rightarrow \overline{E} \subset E$. But $E \subset \overline{E}$ always. $\therefore E = \overline{E}$. Conversely, $E = \overline{E} = E \cup E' \Rightarrow E' \subset E \Rightarrow E$ is closed.

(3) Let $p \in \overline{E} \Rightarrow p \in E \cup E' \Rightarrow p \in E$ or $p \in E'$. If $p \in E$ then $p \in F[:: E \subset F]$ Let $p \in E' \Rightarrow p$ is a limit point of $E \Rightarrow$ Every neighbourhood of p contains atleast one point $q \in E$ such that $q \neq p \Rightarrow$ Every neighbourhood of p contains atleast one point $q \in F$ such that $q \neq p[:: E \subset F] \Rightarrow p$ is a limit point of $F \Rightarrow p \in F(:: F \text{ is closed}) \Rightarrow \overline{E} \subset F$.

Theorem 1.41 Let E be a non-empty set of real numbers, which is bounded above. Let $y = \sup E$ then $y \in \overline{E}$. Hence $y \in E$ if E is closed.

Proof: Let $y = \sup E$. By the definition of $\sup \forall \operatorname{real} h > 0$ there exists $X \in E$ such that $y - h < x < y \Rightarrow y - h < x < y + h \forall h > 0$ and $x \in E \Rightarrow N_h(y) \cap E - \{y\} \neq \emptyset \forall h > 0 \Rightarrow y$ is a limit point of $E \Rightarrow y \in E' \subset \overline{E} \Rightarrow y \in \overline{E}$. If E is closed then $E = \overline{E}$. Hence $y \in E$ if E is closed.

Note 1.42 Let X be a metric space and $Y \subset X$. Then Y itself is a metric space under the same metric in X.

Definition 1.43 Open relative: Suppose $E \subset Y \subset X$ and E is open relative to Y if $\forall p \in E$ there exists $r_p > 0$ such that $d(p,q) < r_p, q \in Y \Rightarrow q \in E$.

Note 1.44 $N_{r_p}(p) \cap Y \subset E$.

Example 1.45 $(a,b) \subset R \subset R \times R$. Here segment (a,b) is open in R but not open in $R \times R$.

Theorem 1.46 Suppose $Y \subset X$, a subset E of Y is open relative to Y iff $E = Y \cap G$ for some open subset G of X.

Proof: Suppose E is open relative to Y. Then $\forall p \in E$ there exists $r_p > 0$ such that $d(p,q) < r_p, q \in Y \Rightarrow q \in E$ (1)

Let $V_p = \{q \in X | d(p,q) < r_p\} \Rightarrow V_p$ is neighbourhood in $X \Rightarrow V_p$ is open in X. Let $G = \bigcup_{p \in E} V_p \Rightarrow G$ is open in X {Arbitrarty \bigcup of open set is open}. Claim: $E = Y \cap G$. Let $p \in E \Rightarrow p \in V_p$ ($\because V_p$ is neighbourhood of p) and $p \in V$ ($\because E \subset Y$) $\Rightarrow p \in V_p \subset \bigcup V_p = G$ and

 $p \in Y \Rightarrow p \in G \cap Y \Rightarrow E \subset G \cap Y.....(2)$

Let $q \in Y \cap G \Rightarrow q \in G$ and $q \in Y \Rightarrow q \in \bigcup_{p \in E} V_p$ and $q \in Y \Rightarrow q \in V_p$ for some $p \in E$ and $q \in Y \Rightarrow d(p,q) < r_p$ and $q \in Y$ for some $p \Rightarrow q \in E$ (by (1)) $\Rightarrow Y \cap G \subset E$(3)

By (2) and (3), $E = y \cap G$. Conversely, suppose $E = G \cap Y$ for some open set G in X. To prove: $E \subset Y$ is open relative to Y. Let $p \in \overline{E} \Rightarrow p \in G \cap Y$ for some open set G in $X \Rightarrow p \in Y$ and $p \in G \Rightarrow p \in Y$ and $V_p \subset G$ where V_p is a neighbourhood of p in $X \Rightarrow Y \cap V_p \subset Y \cap G = E \Rightarrow E$ is open relative to Y.

Compact Set:

Definition 1.47 Let X be a metric space. By an open cover of a set E in X we mean a collection $\{G_{\alpha}\}$ of open sets in X such that

$$E \subset \bigcup_{\alpha} G_{\alpha}.$$

Example 1.48 Consider the collection, $I = \{(-n, n) | n \in N\}$ is a family of open sets in R clearly I is an open cover for R.

Definition 1.49 A subset K of metric space X is said to be compact, if every open cover of K contains a finite subcover (or) A set K is compact in X and

$$K \subset \bigcup_{\alpha} G_{\alpha} \cdot G_{\alpha}$$

is open in X, which implies, there exists $\alpha_1, \alpha_2, ..., \alpha_n$ such that

$$K \subset \bigcup_{i=1}^{n} G_{\alpha_i}.$$

Result 1.50 Let X be a metric space. Let $A = \{X_1, X_2, ..., X_n\}$ be a finite set in X. Clearly A is compact.

Theorem 1.51 Suppose $K \subset Y \subset X$. Then, K is compact relative to X iff K is compact relative to Y.

Proof: Suppose K is compact relative to X. To prove: K is compact relative to Y. Let $\{V_{\alpha}\}$ be collection of open set in Y and $K \subset \bigcup_{\alpha} V_{\alpha}$. Now V_{α} is open in $Y \Rightarrow$ there exists an open set G_{α} in X such that $V_{\alpha} = G_{\alpha} \cap Y \ \forall \alpha$. Now $K \subset \bigcup_{\alpha} V_{\alpha} \Rightarrow K \subset \bigcup_{\alpha} (G_{\alpha} \cap Y) \Rightarrow K \subset (\bigcup_{\alpha} G_{\alpha}) \cap Y \Rightarrow K \subset \bigcup_{\alpha} G_{\alpha}$. G_{α} is open in X. Since K is compact relation to X, there exists $\alpha_1, \alpha_2, ..., \alpha_n$ such that $K \subset \bigcup_{i=1}^n G_{\alpha_i}$. Now $K \cap Y \subset (\bigcup_{i=1}^n G_{\alpha_i}) \cap Y \Rightarrow K \subset \bigcup_{i=1}^n (G_{\alpha_i} \cap Y) \Rightarrow K \subset \bigcup_{i=1}^n V_{\alpha_i} \Rightarrow K$ is compact relative to Y. Conversely, suppose K is compact relative to Y. To prove: K is compact relative to X. Let $\{G_{\alpha}\}$ be collection of open set in X. Now, $K \subset \bigcup_{\alpha} G_{\alpha} \Rightarrow K \cap Y \subset (\bigcup_{\alpha} G_{\alpha}) \cap Y \Rightarrow K \subset \bigcup_{\alpha} (G_{\alpha} \cap Y)$ where $V_{\alpha} = G_{\alpha} \cap Y \Rightarrow K \subset \bigcup_{\alpha} V_{\alpha} [V_{\alpha}$ is open in Y]. Since K is compact relative to Y, there exists $\alpha_1, \alpha_2, ..., \alpha_n$ such that $K \subset \bigcup_{i=1}^n V_{\alpha_i} = \bigcup_{i=1}^n (G_{\alpha_i} \cap Y)$ (i.e.) $K \subset \bigcup_{i=1}^n G_{\alpha_i} \cap Y \Rightarrow K \subset \bigcup_{i=1}^n G_{\alpha_i} \Rightarrow K$ is compact relative to X.

Theorem 1.52 Compact subsets of a metric are closed.

Proof: Let K be a compact subset of a metric X. To prove: K is closed, it is enough to prove that K^c is open. If $q \in K$. Let V_q and W_q be neighbourhood of p and q respectively of radius less than $d(p,q)/2 \Rightarrow V_q \cap W_q = \emptyset \ \forall q \in$ $K. \{W_q | q \in K\}$ is an open cover for K. Since K is compact there exist $q_1, q_2, ..., q_n \in K$ such that $K \subset \bigcup_{i=1}^n W_{q_i}$. Let $W = \bigcup_{i=1}^n W_{q_i}$ and V = $V_{q_1} \cup V_{q_2} ... \cup V_{q_n}$. Clearly, V is a neighbourhood of p. Also $V \cap W = \emptyset \Rightarrow$ $V \subset W^c \subset K^c \Rightarrow V \subset K^c \Rightarrow p$ is an interior point of $K^c \Rightarrow K^c$ is open $\{ \because p \}$ is arbitrary $\} \Rightarrow K$ is closed.

Theorem 1.53 Closed subset of a compact sets are compact.

Proof: Suppose $F \subset K \subset X$, where F is closed with respect to X and K is compact. To prove: F is compact. Let $\{V_{\alpha}\}$ be an open cover for F. Now F is closed $\Rightarrow F^c$ is open. Let $\Omega = \{V_{\alpha}\} \cup \{F^c\}$. Now, Ω is an open cover for K. As K is compact, there exists an finite subcover ϕ of Ω such that ϕ covers $K \Rightarrow \phi$ covers F ($\because F \subset K$). If $F^c \in \phi$ then $\phi - \{F^c\}$ covers F. $\therefore F$ is compact.

Corollary 1.54 *F* is closed and *K* is compact. Then $F \cap K$ is compact. **Proof:** Since *K* is compact subset of a metric space $\Rightarrow K$ is closed. [by Theorem 1.52] $\Rightarrow K \cap F$ is closed. [:: F is closed] Now $F \cap K \subset K \Rightarrow F \cap K$ is compact, by Theorem 1.53

Theorem 1.55 If $\{K_{\alpha}\}$ is a collection of compact subset of a metric set X, such that the intersection of every finite subcollection of K_{α} is non-empty, then $\bigcap K_{\alpha}$ is non-empty.

Proof: Fix a member K_1 of $\{K_\alpha\}$ and put $G_\alpha = K_\alpha^c$. Assume that no point of K_1 belongs to every K_α (i.e.) $K_1 \cap (\bigcap_\alpha K_\alpha) = \emptyset \Rightarrow K_1 \subset (\bigcap K_\alpha)^c = \bigcup_\alpha K_\alpha^c = \bigcup_\alpha G_\alpha \Rightarrow K_1 \subset \bigcup_\alpha G_\alpha$. Since $\{G_\alpha\}$ is an open cover for K_1 and K_1

is compact, there exists $\alpha_1, ..., \alpha_n$ such that $K_1 \subset \bigcup_{i=1}^n G_{\alpha_i} = (\bigcup_{i=1}^n K_{\alpha_i}^c) = (\bigcap_{i=1}^n K_{\alpha_i})^c \Rightarrow K_1 \cap (\bigcap_{i=1}^n K_{\alpha_i}) = \emptyset$. This is a contradiction to the above hypothesis. \therefore Our assumption is wrong. \therefore We have $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$.

Corollary 1.56 $\{K_n\}$ is a sequences of non-empty compact set such that $K_n \supset K_{n+1} (n = 1, 2, ...)$ then $\bigcap_{n=1}^{\infty} K_n$ is non-empty.

Proof: Since $K_n \supset K_{n+1} \forall n$. We have every finite intersection of K_n is non-empty. \therefore by above theorem $\bigcap_{n=1}^{\infty} K_n$ is non-empty.

Theorem 1.57 Bolzono weistras theorem: If E is a finite subset of a compact set k. Then E has a limit point in K.

Proof: Suppose no point of k is a limit point of E. Then for each $q \in k$ there exists a neighbourhood V_q of q such that V_q contains atmost one point of E namely, q if $q \in E$. Let $\{V_q | q \in k\}$ be an open cover for k. Clearly, no finite subcollection of $\{V_q\}$ covers E and same is true for k. [Since $E \subset k$] This is a contradiction to the fact that k is compact. \therefore Our assumption is wrong. \therefore E has a limit point in k.

Theorem 1.58 If $\{I_n\}$ is a sequence of intervals in R such that $I_n \supset I_{n+1}$ n = 1, 2, ... Then $\bigcap_{n=1}^{\infty} I_n$ is non-empty.

Proof: Let $I_n = [a_n, b_n]$ n = 1, 2, ... Let $E = \{a_n/n \in N\} \Rightarrow E$ is bounded above by b_1 Let x be the least upper bound of E. (i.e.) $x = \sup E$. If m and n are positive integers, then $a_n \leq a_{m+n} \leq x \leq b_{m+n} \leq b_m \forall m \Rightarrow x \leq b_m \forall m$ and $a_m \leq x \leq m \Rightarrow a_m \leq x \leq b_m \forall m \Rightarrow x \in [a_m, b_m] \forall m \Rightarrow x \in I_m \forall m \Rightarrow$ $x \in \bigcap_{n=1}^{\infty} I_n \therefore x \in \bigcap_{n=1}^{\infty}$ is non-empty.

Theorem 1.59 Let k be a the integer $\{I_n\}$ is a sequence of k cells such that $I_n \supset I_{n+1} \supset I_{n+2}...$ Then $x \in \bigcap_{n=1}^{\infty} I_n \neq \phi$.

Proof: Given $I_n = \{\bar{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^k | a_{n,j} \leq x_j \leq b_{n,j}, j = 1, 2, ..., k$ and $n = 1, 2, ...\}$. Given $I_n \supset I_{n+1} \supset I_{n+2}$... Let $I_{n,j} = [a_{n,j}, b_{n,j}]$ $1 \leq j \leq k$ and n = 1, 2, ... For each $j, \{I_{n,j}\}$ is a sequence of intervals such that $I_{n,j} \supset I_{n+1,j}$ $n = 1, 2, 3, 4... \Rightarrow \bigcap_{n=1}^{\infty} I_{n,j} \neq \emptyset$ for each j (By Theorem 1.58). Let $x_j \in \bigcap_{n=1}^{\infty} I_{n,j}$ for each j = 1 to $k \Rightarrow$ for each $j, x_j \in I_{n,j} \forall n = 1, 2, ...$ Let $\bar{x} = \{x_1, x_2, ..., x_k\} \in I_n \forall n = 1, 2, ... \Rightarrow \bar{x} \in \bigcap_{n=1}^{\infty} I_n \Rightarrow \bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Theorem 1.60 Every k-cell is compact.

Proof: $I = \{\bar{x} = \{x_1, x_2, ..., x_k \in \mathbb{R}^k | a_i \leq x_i \leq b_i\}$, put $S = [\sum_{i=1}^k (b_i - a_i)^2]^{\frac{1}{2}}$. Now, for each $\bar{x}, \bar{y} \in I$, $|\bar{x} - \bar{y}| \leq S$. To prove: I is compact. Suppose I is not compact. \Rightarrow There exists an open cover $\{G_\alpha\}$ of I such that it has no finite subcover for I. Put $c_j = \frac{a_j + b_j}{2}$. The intervals $[a_j, b_j]$ and $[c_j, b_j]$. Then determine 2^k , k-cells Q_i such that $I = \bigcup_{i=1}^{2^k} Q_i$. Then atleast one of these cells Q_i , say I_1 cannot be covered by any finite subcollection of G_α . Proceeding like this we have

(a) $I \supset I_1 \supset I_2 \supset \dots$

(b) Each I_n is not covered by any finite subcollection of $\{G_{\alpha}\}$ and (c) $\bar{x}, \bar{y} \in I_n, |\bar{x} - \bar{y}| \leq \frac{\delta}{2^n}$

by (a){ I_n } is a sequence of k-cells such that $I_n \supset I_{n+1} \supset I_{n+2}..., n = 1, 2, ... \Rightarrow \bigcap_{n=1}^{\infty} I_n \neq \emptyset$ for each j (By Theorem 1.58) $\Rightarrow \bar{x} \in \bigcap_{n=1}^{\infty} I_n \Rightarrow \bar{x} \in I_n \forall n = 1, 2, ... \Rightarrow \bar{x} \in G_\alpha$ for some $\alpha [\because I_n \subset I \subset \bigcup_\alpha G_\alpha] \Rightarrow$ There exists a neighbourhood $N_r(\bar{x})$ such that $N_r(\bar{x}) \subset G_\alpha[\because G_\alpha$ is open] $\Rightarrow \{\bar{y} \mid |\bar{x} - \bar{y}| < r\} \subset G_\alpha....$ (1)

Since $r > 0, \delta > 0$. There exists a positive integer n such that $n \cdot r > \delta$ (by Archimedian principle) $\Rightarrow 2^n \cdot r > n \cdot r > \delta \Rightarrow 2^n \cdot r > \delta \Rightarrow r > S \cdot 2^{-n} \Rightarrow r > \frac{\delta}{2^n} \dots$ (2)

Let $\bar{y} \in I_n \Rightarrow |\bar{x} - \bar{y}| < \frac{\delta}{2^n} [\because \bar{x} \in I_n \ \forall n] \Rightarrow |\bar{x} - \bar{y}| < r \Rightarrow \bar{y} \in N_r(\bar{x}) \Rightarrow I_n \subset N_r(\bar{x}) \subset G_\alpha \Rightarrow \Leftarrow$ (b). \therefore Our assumption is wrong. \therefore Every k-cell is compact.

Theorem 1.61 A set in \mathbb{R}^k has one of the following three properties then it has the other two.

(a) E is closed and bounded.

(b) E is compact.

(c) Every infinite subset of E has a limit point in E.

Proof: $(a) \Rightarrow (b)$ Assume that E is closed and bounded. To prove: E is compact. Since E is bounded, $E \subset I$ for some k-cell I. By the above theorem I is compact. $\therefore E$ is a closed subset of compact set I. $\Rightarrow E$ is compact.

 $(b) \Rightarrow (c)$ The proof is obvious from, Theorem 1.57.

 $(c) \Rightarrow (a)$ Suppose every infinite subset of E has a limit point in E. To prove E is closed and bounded. Suppose E is not bounded. \Rightarrow There exists $\bar{x}_n \in E$ such that $|\bar{x}_n| > n$ (n = 1, 2, ...). Let $S = \{\bar{x}_n | |\bar{x}_n| > n$, $n = 1, 2, ...\}$(*) Clearly, S is a infinite subset of E and S has no limit points in \mathbb{R}^k . Which implies, S has no limit points in E [$: E \subset \mathbb{R}^k$] (Suppose \bar{x} is a limit point of S. Then $N_r(\bar{x})$ contains infinitely many points of $S \forall \bar{y} \in S$. Now, $||\bar{y}| - |\bar{x}|| < |\bar{y} - \bar{x}| < r \Rightarrow |\bar{y}| < |\bar{x}| + r < m$ for some integer $m \Rightarrow |\bar{y}| < m$ for integer \bar{y} in S. There exists n > m such that $\bar{y} = \bar{x}_n \in S$ and $|\bar{x}_n| < m \Rightarrow |\bar{x}_n| < m < n \Rightarrow |\bar{x}_n| < n, \bar{x}_n \in S \Rightarrow \Leftrightarrow$ to (*)) $\therefore E$ is bounded. Suppose E is not closed. There exists a point \bar{x}_0 in \mathbb{R}^k such that \bar{x}_0 a limit point of E, but $\bar{x}_0 \notin E \Rightarrow$ Every neighbourhood of \bar{x}_0 contains a point \bar{y} of E such that $\bar{y} \neq \bar{x}_0$ (i.e.) For $n = 1, 2, ..., N_{\frac{1}{n}}(\bar{x}_0)$ contains a point \bar{x}_n of E, $\bar{x}_n \neq \bar{x}_0$. Let $S = \{\bar{x}_n | |\bar{x}_n - \bar{x}_0| < \frac{1}{n} n = 1, 2, ...\}$. $\therefore S$ is infinite. [otherwise $|\bar{x}_n - \bar{x}_0|$ would have a constant positive value for infinitely many n] Also \bar{x}_0 is the only limit point of S. Suppose there is a point $\bar{y} \in \mathbb{R}^k$ such that $\bar{y} \neq \bar{x}_0$ and

 \bar{y} is a limit point of S. Consider

$$\begin{aligned} |\bar{y} - \bar{x}_0| &= |\bar{y} - \bar{x}_n + \bar{x}_n - \bar{x}_0| \\ &\leq |\bar{y} - \bar{x}_n| + |\bar{x}_n - \bar{x}_0| \\ -|\bar{y} - \bar{x}_0| &\geq -|\bar{y} - \bar{x}_n| - |\bar{x}_n - \bar{x}_0| \\ &\Rightarrow |\bar{x}_n - \bar{y}| \geq |\bar{y} - \bar{x}_0| - |x_n - x_0| \\ &> |\bar{y} - \bar{x}_0| - \frac{1}{n} \dots \dots (1) \end{aligned}$$

Now as $|\bar{x}_0 - \bar{y}| > 0$ and $2 \in \mathbb{Z}^+$ such that there exists an positive integer m such that $m|\bar{x}_0 - \bar{y}| > 2$ [By Archimedian principle]

$$\Rightarrow n|\bar{x}_0 - \bar{y}| > 2 \ \forall n \ge m$$

$$\Rightarrow \frac{1}{2}|\bar{x}_0 - \bar{y}| > \frac{1}{n} \ \forall n \ge m$$

$$\Rightarrow -\frac{1}{2}|\bar{x}_0 - \bar{y}| < -\frac{1}{n}$$

By (1)
$$\Rightarrow |\bar{x}_n - \bar{y}| \ge |\bar{x}_0 - \bar{y}| - \frac{1}{n}$$

$$\ge |\bar{x}_0 - \bar{y}| - \frac{1}{2}|\bar{x}_0 - \bar{y}|$$

$$= \frac{1}{2} |\bar{x}_0 - \bar{y}| = r \ (\text{say}) \ \forall n \ge m$$

$$\therefore |\bar{x}_n - \bar{y}| \ge r \ \forall n \ge m.$$

(i.e.) There exists a neighbourhood \bar{y} such the neighbourhood contains only finite number of points of S, it is a contradiction to the assumption that \bar{y} is a limit point of S. \therefore Our assumption is wrong. Hence \bar{y} is not a limit point of S. \therefore S has only one limit point \bar{x}_0 in \mathbb{R}^k and x_0 is not in $E \Rightarrow S$ has no limit points in E. (i.e.) S is an infinite subset of E and it has no limit point in E. $\Rightarrow \Leftarrow$ hypothesis (c). $\therefore E$ is closed.

Theorem 1.62 Heine-Borel theorem: Any subset $Eof \mathbb{R}^k$ is closed and bounded iff E is compact.

Remark 1.63 The Heine-Borel theorem need not be true for any general metric space.

Example 1.64 Let X be an infinite set. Define a discrete metric d on X,

$$d(p,q) = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$$

Let A be any infinite subset of X. To prove: A is closed and bounded. Clearly, A is bounded in $X[\because d(p,q) \leq 1 \quad \forall p,q \in A]$. Let $\{x\}$ be a subset of X. Claim: $\{x\}$ is open in X. Choose r = 1. Then, $N_r(x) = \{y \in X | d(x, y) < r\} = \{y \in X | d(x, y) < 1\} = \{x\}$. But every neighbourhood is open. $\therefore \{x\}$ is open. \therefore Every singleton set in the discrete metric set is open. Now, $A = \bigcup_{x \in A} \{x\}$. $\therefore A$ is open in X. \therefore Every subset of X is open in $X \Rightarrow A^c$ subset of X is open in $X \Rightarrow A$ is closed in $X \therefore$ Every subset of a discrete metric space X is both open and closed. $A = \bigcup_{x \in A} \{x\} \Rightarrow \{\{x\} | x \in A\}$ is a open cover for A but it has no finite subcover. $\therefore A$ is not compact. \therefore Heine-Borel theorem need not be true for any general metric space.

Theorem 1.65 Weistras theorem: Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Proof: Let E be an infinite subset of $\mathbb{R}^k \Rightarrow E \subset I$ for some k-cell $I \subset \mathbb{R}^k$. But I is compact. By Bolzona Weistras property, E has a limit point in $I \subset \mathbb{R}^k \Rightarrow E$ has a limit point in \mathbb{R}^k .

Perfect Set:

Theorem 1.66 Let P be a non-empty perfect set in \mathbb{R}^k . Then P is uncountable.

Proof: Given P is a perfect set in $\mathbb{R}^k \Rightarrow P$ is closed and all the points of P are the limit point of $P \Rightarrow P$ is infinite $\Rightarrow P$ is either countable or uncountable. If P is countable then $P = \{\bar{x}_1, \bar{x}_2, ..., \bar{x}_n, ...\}$. We construct the sequence of neighbourhood $\{V_n\}$ by the method of induction on n. Let $V_1 = \{\bar{y} \in \mathbb{R}^k | |\bar{y} - \bar{x}_1| < r\}; \quad V_1 = \{\bar{y} \in \mathbb{R}^k | |\bar{y} - \bar{x}_1| \leq r\}$. Obviously, $V_1 \cap P \neq \emptyset$. \therefore Induction true for n = 1. Since every point of P are the limit points, there exists a neighbourhood $V_2(\bar{x}_2)$ such that (i) $\bar{V}_2 \subset V_1$, (ii) $\bar{x}_1 \notin V_2$ and (iii) $V_2 \cap P \neq \emptyset$. Suppose V_n has been constructed so that (i) $\bar{V}_n \subset V_{n-1}$, (ii) $\bar{x}_{n-1} \notin \bar{V}_n$ and (iii) $V_n \cap P \neq \emptyset$. Suppose every point of Pare the limit points there exists a neighbourhood $V_{n+1}(\bar{x}_{n+1})$ such that (i) $\bar{V}_{n+1} \subset V_n$, (ii) $\bar{x}_n \notin \bar{V}_{n+1}$ and (iii) $V_{n+1} \cap P \neq \emptyset$. \therefore by proceeding we have the $\{V_n\}$ of neighbourhood. Put $K_n = \bar{V}_n \cap P \forall n$*

 $\bar{x}_n \notin \bar{V}_{n+1} \ \forall n \Rightarrow \bar{x}_n \notin K_{n+1} \ [K_{n+1} = \bar{V}_{n+1} \cap P] \Rightarrow \text{ no points of } P \text{ lies in } \bigcap_{n=1}^{\infty} K_n \dots (1)$

Now,
$$K_n = \overline{V}_n \cap P \Rightarrow K_n \subset P \ \forall n \Rightarrow \bigcap K_n \subset K_n \subset P$$
..... (2)
From (1) and (2), $\bigcap K_n = \emptyset$ (3)

As \bar{V}_n is a subset of \mathbb{R}^k and \bar{V}_n is closed and bounded $\Rightarrow \bar{V}_n$ is compact. Now, P is closed $\Rightarrow \bar{V}_n \cap P$ is closed and $\bar{V}_n \cap P \subset \bar{V}_n$. (i.e.) $\bar{V}_n \cap \mathbb{R}^k$ is compact[*] and also $\bar{V}_{n+1} \subset V_n \subset \bar{V}_n \Rightarrow \bar{V}_{n+1} \cap P \subset \bar{V}_n \cap P \Rightarrow K_{n+1} \subset K_n \forall n$. \therefore We have a $\{K_n\}$ of compact such that $K_n \supset K_{n+1}$. \therefore by Theorem 1.55, $\bigcap K_n \neq \emptyset \Rightarrow \Leftarrow$ to (3). \therefore Our assumption is wring. $\therefore P$ is uncountable.

Corollary 1.67 Every [a, b](a < b) is uncountable. In particular, the set of all real numbers is uncountable.

Proof: We know that, Every closed interval is perfect set in $\mathbb{R}^1 \Rightarrow [a, b]$ is uncountable $\Rightarrow \mathbb{R}^1$ is uncountable.

Definition 1.68 The Cantor Set: Define the cantor set P and show that

- 1. P in non-empty.
- 2. P is closed and bounded.
- 3. P is compact.
- 4. P is perfect or dense in itself.
- 5. P contains no segment.

The construction of cantor set: The construction of cantor set shows that there exists a perfect sets in \mathbb{R}^1 which contains no segment. Let $E_0 = [0, 1]$. Remove the segment $(\frac{1}{3}, \frac{2}{3})$ from [0, 1] and Let $E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. Remove the middle 3^{rd} of these intervals $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$. Let $E_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$ and each interval is of length $= \frac{1}{9}$, continuing in this way, we obtain a sequence of compact sets

(a)
$$E_0 \supset E_1 \supset E_2...$$

(b) E_n is the union of 2^n intervals.

(i.e.) $E = [0, \frac{1}{3^n}] \cup [\frac{2}{3^n}, \frac{3}{3^n}] \cup \dots \cup [\frac{3^n-3}{3^n}, \frac{3^n-2}{3^n}] \cup [\frac{3^n-1}{3^n}, 1]$ and each of length 3^{-n} . Let $P = \bigcap_{n=1}^{\infty} E_n$. The set P is called the cantor set.

Step 1: To prove: $P \neq \emptyset$. Since each E_n is closed and bounded and also $E_n \subset \mathbb{R}^1$ for each n. By Heine-Borel theorem each E_n is compact. \therefore We have $\{E_n\}$ of compact sets such that $E_n \supset E_{n+1} \forall n$. By Theorem 1.55, $\bigcap_{n=1}^{\infty} E_n \neq \emptyset \Rightarrow P \neq \emptyset$.

Step 2: To prove: *P* is closed and bounded. Since each E_n is closed and bounded. $\Rightarrow \bigcap_{n=1}^{\infty} E_n$ is closed and bounded. $\Rightarrow P$ is closed and bounded. **Step 3:** To prove: *P* is compact. Now, $P \subset \mathbb{R}^1$ and *P* is closed and bounded. \therefore By Heine-borel theorem, *P* is compact.

Step 4: To prove: P is perfect. (i.e.) To prove P is closed and ever point of P are the limit points of P. By step 2, P is closed. Take $x \in P \Rightarrow x \in \bigcap_{n=1}^{\infty} E_n \Rightarrow X \in E_n \forall n$. Let I_n be an interval of E_n which contains x. [$\therefore E_n$ is the union of 2^n closed intervals] Let S be any segment containing x. Choose n large enough so that $I_n \subset S$. Let x_n be an end point of I_n such that $x_n \neq x \Rightarrow x_n P$. Since end point of I_n should be the points of $P \Rightarrow x$ is a limit point of P. [$\because S \cap (P - \{x\}) \neq \emptyset$] Since x is arbitrary, every point Pare the limit points. $\therefore P$ is perfect.

Step 5: *P* is perfect \Rightarrow *P* is uncountable.

Step 6: P contains no segment from the construction of the cantor set. Obviously P does not contain segment of the from $(\frac{3k+1}{3^m}, \frac{3k+2}{3^m})$ (1) where $k, m \in Z^+$. Let (α, β) be any segment and if (α, β) contains a segment (1) only if $3^{-m} < \frac{\beta - \alpha}{6}$. But P does not contains the segments (1). $\therefore P$ does not contains the segments the segments (α, β) . Since (α, β) is arbitrary. $\therefore P$ contains no segment.

Connected Sets:

Definition 1.69 Separated Sets: Any two subsets A and B of a metric space X are said to be separated if $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$.

Example 1.70 A = (2,3), B = (3,4) and C = (3,4). Then A and B are separated. $\bar{A} = [2,3]; \bar{B} = [3,4]; \bar{C} = [3,4]$. Now, $\bar{A} \cap B = [2,3] \cap (3,4) = \emptyset; A \cap \bar{B} = [2,3] \cap [3,4] = \emptyset$. \therefore A and B are separated. $\bar{A} \cap C = [2,3] \cap [3,4] = \{3\} \neq \emptyset \Rightarrow A$ and C are not separated.

Remark 1.71 1. Separated Sets are disjoint.

2. Disjoint Sets need not be separated.

Definition 1.72 Connected Sets: A set $E \subset X$ is said to be connected if E is not a union of two non-empty separated sets.

Theorem 1.73 A subset E of the real line \mathbb{R}^1 is connected iff it has the following property. If $x \in E, y \in E$ and x < z < y then $z \in E$ (or) Find all the connected subsets of the real line.

Proof: Suppose *E* is connected. To prove: If $x, y \in E, x < z < y$ then $x \in E[E$ is an interval] Suppose there exists $x, y \in E$ and some $z \in (x, y)$ such that $z \notin E$. Then $E = A_z \cup B_z$ where $A_z = E \cap (-\alpha, z)$; $B_z = E \cap (z, \alpha)$; $A_z \neq \emptyset$; $B_z \neq \emptyset$ [$\therefore x \in A_z$ and $x \in B_z$]. Now, $\overline{A_z} \cap B_z = \emptyset$; $A_z \cap \overline{B_z} = \emptyset$. $\therefore A_z$ and B_z are non-empty separated sets. $A_z \cup B_z = (E \cap (-\alpha, z)) \cup (E \cap (z, \alpha)) = E \cap [(-\alpha, z) \cup (z, \alpha)] = E \cap \{R - \{z\}\} = E [z \notin E$ and $E \subset R - \{z\}]$. $\therefore E$ can be expressed as the union of two-non-empty separated sets. $\therefore E$ is not connected. This is a contradiction. Hence, if $\forall x \in E, y \in E$ and x < z < y then $z \in E$. Conversely, Suppose if $\forall x \in E, y \in E$ and x < z < y. Then $z \in E$ (1)

To prove: E is connected. Suppose E is not connected. $\Rightarrow E$ can be expressed as union of two non-empty separated sets. $\therefore E = A \cup B$ where A and B are two non-empty separated sets. Choose $x \in A, y \in B$ such that x < y. Now, $A \cap [x, y]$ is a set of real numbers and it is bounded above by y and also has a sup z. (i.e.) $z = \sup(A \cap [x, y]) \Rightarrow z \in \overline{A \cap [x, y]} \subset \overline{A}$ [by Theorem 7] $\Rightarrow z \in \overline{A} \Rightarrow z \notin B$ [$\because A \cap [x, y] \subset A$] $\because z = \sup(A \cap [x, y]) \Rightarrow z \ge \alpha \ \forall \alpha \in$ $A \cap [x, y]$. In particular $x \le z, z \le y$. But $z \notin B$ $\therefore z < y$ $\therefore x \le z < y$ (2)

 $x \in A, x < y$ there exists $z \notin B$ x < z < y. Now, $z \in \overline{A} \Rightarrow z \in A \cup A' \Rightarrow z \in A$ or $z \in A'$

Case (i): If $z \in A \Rightarrow z \notin \overline{B}$ [$:: A \cap \overline{B} = \emptyset$] \Rightarrow There exists a point z such that $z < z_1 < y$ and $z_1 \notin B$. Also $z_1 \notin A$ [$:: z_1 \notin A, x < z_1 < y$ and $z_1 \in (x, y) \subset [x, y] \Rightarrow z_1 \in A \cap [x, y] \therefore z = \sup(A \cap [x, y]) \text{ and } z_1 > z \Rightarrow \Leftarrow$] $:: z_1 \notin A \cup B \Rightarrow z_1 \notin E \Rightarrow \Leftarrow \text{ to } (1)$

Case (ii): If z is not in A and $z \in A' \therefore z$ is a limit point of A. Also

x < z < y and $x, y \in E$. Since z is a limit point of $A, z \in \overline{A} \Rightarrow z \notin B[:: \overline{A} \cap B = \emptyset] \therefore z \notin A$ and $z \notin B \Rightarrow z \notin A \cup B = E$. $\therefore z \notin E \Rightarrow \leftarrow$ to (1) \therefore From case (i) and (ii) the contradiction shows that E is connected.

Problem 1.74 Let E' be the set of all limit points of the set E. Prove that E' is closed and also prove that E and \overline{E} have the same limit points, Do E and E' always have the same limit point?

Proof: To prove: E' is closed. Let E'' denoted the set of all limit points of E'. It $E'' = \emptyset$ then E' is closed. Suppose $E'' \neq \emptyset$. Let $x \in E'' \Rightarrow x$ is a limit point of E'. There exists r > 0 such that $N_r(x)$ contains a point Y of E' such that $Y \neq E' \Rightarrow Y \in E' \Rightarrow Y$ is a limit point of E. \Rightarrow Every neighbourhood of Y contains infinitely many points of E. \Rightarrow Every neighbourhood of x contains infinitely many points if E. $\Rightarrow x$ is a limit point of E. $\Rightarrow x \in E' \therefore E' \subset E' \therefore E'$ contains all its limit points. E' in closed. To prove: E and E' have same limit points. (i.e.) To prove $E' = \overline{E'}$. Let $x \in E' \Rightarrow x$ is a limit points of E. There exists $r > 0, N_r(x)$ contains points Y of E such that $y \neq x \Rightarrow \forall r > 0, N_r(x)$ contains Y of \overline{E} such that $y \neq x \Rightarrow x$ is a limit point of \overline{E} . $\Rightarrow x \in \overline{E'} \therefore E' \subseteq \overline{E'} \ldots E' \subseteq \overline{E'} \ldots E' \subseteq \overline{E'} \ldots E' \subseteq \overline{E'} \ldots E'$

Let $x \in \overline{E'} \Rightarrow x$ is a limit point of $\overline{E} \Rightarrow x \in \overline{E}$ [$:: \overline{E}$ is closed] $\Rightarrow x$ is a limit point of $E \cup E' \Rightarrow : x$ is a limit point of E (or) x is a limit point of $E' \Rightarrow x \in E'$ or $x \in E'' \subset E'$ [:: E' is closed] $\Rightarrow x \in E' \therefore \overline{E'} \subset E'$ (2)

From (1) and (2), $E' = \overline{E'}$. To prove E and E' need not have the same limit point. Let $E = \{0, 1, \frac{1}{2}, ...\}$; $E' = \{0\}$. Then E has limit point $\{0\}$ only and E' have the no limit point. $\therefore E$ and E' need not have the same limit point.

Problem 1.75 Let $K \subset \mathbb{R}^1$ consists of numbers $0, \frac{1}{n}$, (n = 1, 2, ...). Prove that K is compact without using Heine-Borel theorem.

Proof: Let $\{G_{\alpha}\}$ be an open cover for K. \Rightarrow Now $0 \in K \Rightarrow 0 \in G_{\alpha_1}$ for some α_1 . Since G_{α_1} is open there exists a neighbourhood $N_{\epsilon}(0) \subset G_{\alpha_1}$, $(-\epsilon, \epsilon) \subset G_{\alpha_1}$. By Archimedian Principle, there exists $m \in \mathbb{Z}^+$ such that $m \cdot \epsilon > 1 \Rightarrow n \cdot \epsilon \ge m \cdot \epsilon > 1 \quad \forall n \ge m \Rightarrow \frac{1}{n} < \epsilon \quad \forall n \ge m \Rightarrow \frac{1}{n} \in$ $(-\epsilon, \epsilon) \quad \forall n \ge m \Rightarrow 0 \text{ and } \frac{1}{n} \in G_{\alpha_1} \quad \forall n \ge m$. There exists $\alpha_2, ..., \alpha_m$ such that $\frac{1}{i-1} \in G_{\alpha_i}, i = 1, 2, ..., m \Rightarrow K \subset \bigcup_{i=1}^n G_{\alpha_i}$. $\therefore K$ is compact.

Problem 1.76 Given an example of an open cover of the segment (0,1) which has no finite subcover (or) prove that (0,1) are not compact.

Proof: Consider the family of open intervals $\mathcal{F} = \{(\frac{1}{1+n}, n) | n = 1, 2, ...\}$. Clearly \mathcal{F} is an open cover for (0, 1). (i.e.) $(0, 1) \subset \bigcup_{n=1}^{\infty} (1/1 + n, n)$. Also we cannot find any subcollection from \mathcal{F} covering (0, 1). The open cover \mathcal{F} has no finite subcover for $(0, 1) \Rightarrow (0, 1)$ is not compact.

Note 1.77 In general $(a, b) \subseteq \mathbb{R}^1$ is not compact. Since $\{(a + \frac{1}{n+1}, b) | n \in Y\}$ it is an open cover for (a, b) and it has no finite subcover covering (a, b). $\therefore (a, b)$ is not compact. Example 1.78 Prove that: Set of all irrational is uncountable.

Proof: \mathbb{R} is uncountable (by Corollary 1.67) and also \mathbb{Q} is countable. If {irrational} is countable. $= \mathbb{Q} \cup \{\text{irrational}\} = \text{countable} \Rightarrow \notin \text{to } (1) \therefore$ irrational is uncountable.

Example 1.79 Construct a bounded set of real numbers with exactly 3 limit points.

Proof: $E = \{1 + \frac{1}{n}, 2 + \frac{1}{n}, 3 + \frac{1}{n} | n \in N\} \subseteq \mathbb{R}$. It has exactly 3 limit points namely 1, 2, 3. Since X < 5 for all $x \in E \Rightarrow E$ is bounded.

Note 1.80 $E = \{\frac{1}{n}\} \cup \{\frac{1}{n} + \frac{1}{m}\} | m, n \in \mathbb{Z}^+\} \cup \{0\} \subseteq \mathbb{R}$. It is closed and bounded subset of \mathbb{R}^1 . $\therefore E$ is compact.

Example 1.81 Let E° denote the set of all interior points of a set E.

(a) Prove that E° is always open.

(b) Prove that E is open iff $E = E^{\circ}$.

(c) If $G \subset E$ and G is open prove that $G \subset E^{\circ}$.

(d) Prove that the complement of E° is the closure of the complement of E^{c} . (*i.e.*) $E^{\circ^{c}} = \overline{E}^{c}$. Do E and \overline{E} always have the same interiors? Do E and E° always have same closure?

Proof: (a) Prove that E° is open. Let $x \in E^{\circ} \Rightarrow x$ is an interior point of $E. \Rightarrow$ There exists r > 0 such that $N_r(x) \subset E$. Claim: $N_r(x) \subset E^{\circ}$. Let $y \in N_r(x) \Rightarrow$ There exists S > 0 such that $N_S(y) \subset N_r(x) \subset E.[:: N_r(x)$ is open] $\Rightarrow y \in N_S(y) \subset E \Rightarrow y$ is an interior point of $E. \Rightarrow y \in E^{\circ} \Rightarrow N_r(x) \subset E^{\circ} \therefore x$ is an interior point of E° . Since x is arbitrary. Every point of E° in an interior point. $\therefore E^{\circ}$ is open.

(b) Suppose E is open. To prove $E = E^{\circ} \Rightarrow E$ is open. Clearly, $E^{\circ} \subset E ::$ E is open, $E \subset E^{\circ}$. $\therefore E = E^{\circ}$. Conversely: $E = E^{\circ} \Rightarrow$ Every point of E is an interior point of E. $\Rightarrow E$ is open.

Convergent Sets

Numerical sequence and series:

Definition 1.82 Let X be a metric space. Let $F : N \to X$ be a function defined by $f(n) = p_n$. Then $p_1, p_2, ..., p_n$ is called sequence in X. Determined by the function F and it is denoted by $\{p_n\}$.

Definition 1.83 $\{p_n\}$ is said to converge to a point p in X if given $\epsilon > 0$ there exists a positive integer N such that $d(p_n, p) < \epsilon \ \forall n \ge N$ and we write $p_n \rightarrow p \ as \ n \rightarrow \infty \ or$

 $\lim_{n \to \infty} p_n = p$

If $\{p_n\}$ does not converge then $\{p_n\}$ diverges.

Definition 1.84 The set of all points $\{p_1, p_2, ..., p_n\}$ is called the range of the sequence $\{p_n\}$. The range set is either finite or infinite.

Definition 1.85 A sequence is said to be bounded. If its range is bounded.

Example 1.86

- 1. $S_n = \{\frac{1}{n}\}$ n = 1, 2, ... Clearly, $S_n \to 0$. $\therefore \{S_n\}$ is a bounded sequences and the range S_n is infinite.
- {n} is not a convergent sequences. It is a divergent sequence. ∴ It is a unbounded sequences. ∴ range is infinite.
- 3. $S_n = i^n$, n = 1, 2, This is not a convergent sequence. \therefore It is a divergent sequence. The range of S_n is finite. \therefore Sequence $\{S_n\}$ is bounded, range of $S_n = \{1, -1, i, -i\}$.

Theorem 1.87 Let $\{p_n\}$ be a sequence in a metric space X. Then, (a) $\{p_n\}$ converges to $p \in S$. p iff every neighbourhood of p contains all but finitely many of the terms of sequence $\{p_n\}$.

(b) It $p \in X, p' \in X$ and $\{p_n\}$ converges to p and p' then p = p'

(c) If $\{p_n\}$ converges then $\{p_n\}$ is bounded.

(d) $E \subset X$ and if p is limit points of E. Then there is a sequence $\{p_n\}$ in E such that

$$p = \lim_{n \to \infty} p_n$$

Proof: (a)Suppose $\{p_n\}$ converges to a point p. Let V be a neighbourhood of p. Since V is open, there exists $\epsilon > 0$, such that $N_{\epsilon}(p) \subset V$. Since $\{p_n\}$ converges to p. Given $\epsilon > 0$ there exists a positive integer N such that $d(p_n, p) < \epsilon \quad \forall n \ge N \therefore p_n \in N_{\epsilon}(p) \quad \forall n \ge N \Rightarrow p_n \in N_{\epsilon}(p) \subset V$ $\forall n \ge N \Rightarrow p_n \in V \quad \forall n \ge N \Rightarrow V$ contains all but finitely many terms of the sequence $\{p_n\}$. Conversely, every neighbourhood of p contains all but finitely many points of sequences $\{p_n\}$. Fix $\epsilon > 0, V = \{q \in X | d(p,q) < \epsilon\}$. Then V is a neighbourhood of p. By assumption, there exists N such that $p_n \in V \quad \forall n \ge N \Rightarrow d(p, p_n) < \epsilon \quad \forall n \ge N \Rightarrow p_n \rightarrow p$ as $n \to \infty$.

(b) The limit of a convergent sequence is unique. Let $\epsilon > 0$ be given let $p \neq p'$ and $p_n \to p$ and $p_n \to p'$. $\therefore p_n \to p$, there exists a positive integer N_1 such that $d(p_n, p) < \epsilon/2 \ \forall n \ge N_1$. As $p_n \to p'$ there exists a positive integer N_2 such that $d(p_n, p') < \epsilon/2 \ \forall n \ge N_2$; $N = ma \times \{N_1, N_2\}$. Now, $\forall n \ge N, d(p, p') \le d(p, p_n) + d(p_n, p') < \epsilon/2 + \epsilon/2 = \epsilon$. Since ϵ is arbitrary, $d(p, p') = 0 \Rightarrow p = p'$.

(c) Every convergent sequences is bounded sequences. Suppose sequence $\{p_n\}$ converges to a point p. Then there exists a positive integer N such that $d(p_n, p) < 1 \ \forall n \geq N$. Let $r = max\{d(p_1, p), ..., d(p_N, p), 1\} \Rightarrow d(p_n, p) < r \ \forall n \Rightarrow$ The range of sequence $\{p_n\}$ is bounded. $\Rightarrow \{p_n\}$ is bounded.

(d) Given that p is a limit point of the set E. \Rightarrow For each there exists a neighbourhood $N_{1/n}(p)$ contains a point p_n of E such that $p_n \neq p$... $d(p_n, p) < 1/n \ \forall n$. Given $\epsilon > 0$ choose N such that $N \cdot \epsilon > 1$. (i.e.) $N > 1/\epsilon$. It $n > N, d(p_n, p) < 1/n < 1/N < \epsilon$... $d(p_n, p) < \epsilon \ \forall n > N \Rightarrow p_n \to p$ as $n \to \infty$. **Theorem 1.88** Suppose $\{S_n\}$ and $\{t_n\}$ are complex sequences and

$$\lim_{n \to \infty} s_n = s, \lim_{n \to \infty} t_n = t.$$

Then,

1.

$$\lim_{n \to \infty} (s_n + t_n) = s + t.$$

2.

$$\lim_{n\to\infty}(cs_n)=cs, \lim_{n\to\infty}(c+s_n)=c+s \text{ for any number } c.$$

3.

$$\lim_{n \to \infty} s_n t_n = st.$$

4.

$$\lim_{n \to \infty} (\frac{1}{s_n}) = \frac{1}{s} (s_n \neq 0 \ \forall n, s \neq 0).$$

Proof: (1) Given $\{s_n\}$ converges to s. Given $\epsilon > 0$ there exists a positive integer n_1 such that $|s_n - s| < \epsilon/2 \quad \forall n \ge n_1$. As $\{t_n\}$ converges to t. Given ϵ there exists a positive integer n_2 such that $|t_n - t| < \epsilon/2$ $\forall n \ge n_2$. Let $N = max\{n_1, n_2\} \Rightarrow |s_n + t_n - (s + t)| = |s_n - s + t_n - t| \le |s_n - s| + |t_n - t| < \epsilon/2 + \epsilon/2 = \epsilon \quad n \ge N \therefore s_n + t_n \to s + t \text{ as } n \to \infty$.

(2) Given $\{s_n\}$ converges to s. Let $\epsilon > 0$ be given. Then there exists a positive integer N such that $|s_n - s| < \epsilon \ \forall n \ge N$. $|c + s_n - (s + c)| = |s_n - s| < \epsilon \ \forall n \ge N$. $\therefore c + s_n \to c + s$ as $n \to \infty$. Now to prove $cs_n \to cs$ as $n \to \infty$. **Case (i):** $c \ne 0$. Given $s_n \to s$. Let $\epsilon > 0$ be given. Then there exists a positive integer N such that $|s_n - s| < \frac{\epsilon}{|c|} \ \forall n \ge N$, $|cs - n - cs| = |c| |s_n - s| < |c| \frac{\epsilon}{|c|} = \epsilon \ \forall n \ge N$. $\therefore cs_n \to cs$ as $n \to \infty$.

Case (ii): If
$$c = 0$$
 then clearly $cs_n \to cs$.

(3) To prove: $s_n t_n \to st$. Let $\epsilon > 0$ be given. Given $s_n \to s \Rightarrow$ there exists positive integer n_1 such that $|s_n - s| < \sqrt{\epsilon} \quad \forall n \ge n_1$. As $t_n \to t \Rightarrow$ there exists positive integer n_2 such that $|t_n - t| < \sqrt{\epsilon} \quad \forall n \ge n_2, N = max\{n_1, n_2\}$. $\therefore |(s_n - s)(t_n - t)| = |s_n - s| |t_n - t| < \sqrt{\epsilon}\sqrt{\epsilon} = \epsilon \quad \forall n \ge N$. $\therefore (s_n - s)(t_n - t) \to 0$ as $n \to \infty$. Now,

$$s_n t_n - st = (s_n - s)(t_n - t) + s(t_n - t) + t(s_n - s)$$
$$\lim_{n \to \infty} s_n t_n - st = \lim_{n \to \infty} (s_n - s)(t_n - t) + \lim_{n \to \infty} s(t_n - t) + \lim_{n \to \infty} t(s_n - s)$$
$$= 0 [\because s_n - s \to 0, \ t_n - t \to 0, \ (s_n - s)(t_n - t) \to 0]$$
$$\therefore \lim_{n \to \infty} s_n t_n = st.$$

(4) Given that $\{s_n\}$ converges to s. Let $\epsilon > 0$ be given. There exists a positive integer N_1 such that

$$|s_n - s| < \frac{|s|}{2} \forall n \ge N_1$$

Always $|s_n - s| \ge |s| - |s_n|$
$$\Rightarrow \frac{|s|}{2} > |s_n - s| \ge |s| - |s_n|$$

$$\Rightarrow \frac{|s|}{2} > |s| - |s_n|$$

$$\Rightarrow |s| - |s_n| < \frac{|s|}{2}$$

$$\Rightarrow |s| - \frac{|s|}{2} < |s_n|$$

$$\Rightarrow \frac{|s|}{2} < |s_n| \quad \forall n \ge N_1$$

Now $s_n \to s \Rightarrow$ There exists a positive integer N_2 such that $|s_n - s| < \epsilon \frac{|s|^2}{2}$ $\forall n \ge N_2$. Let $N = max\{N_1, N_2\}$

$$\begin{aligned} \frac{1}{s_n} - \frac{1}{s} \bigg| &= \frac{|s_n - s|}{|s_n| \, |s|} \\ &< \epsilon \frac{|s|^2}{2} \cdot \frac{2}{|s| \, |s|} \, \left[\because \frac{|s|}{2} < |s_n| \right] \\ &= \epsilon \, \forall n \ge N \\ &\Rightarrow \frac{1}{s_n} \to \frac{1}{s} \text{ as } n \to \infty. \end{aligned}$$

Theorem 1.89 1. Suppose $\bar{x}^n \in \mathbb{R}^k$, (n = 1, 2, ...) and $\bar{x}_n = \{\alpha_{1,n}, \alpha_{2,n}, ..., a_{k,n}\}$. Then $\{\bar{x}_n\}$ converges to $\bar{x} = (\alpha_1, \alpha_2, ..., \alpha_k) \Leftrightarrow$

$$\lim_{n \to \infty} \alpha_{j,n} = \alpha_j, \ 1 \le j \le k.$$

2. Suppose $\{\bar{x}_n\}, \{\bar{y}_n\}$ are sequences in $\mathbb{R}^k, \{\beta_n\}$ is a sequence of real numbers and $\bar{x}_n \to \bar{x}, \bar{y}_n \to \bar{y}, \beta_n \to \beta$. Then,

$$\lim_{n \to \infty} (\bar{x}_n + \bar{y}_n) = \bar{x} + \bar{y} \text{ and } \lim_{n \to \infty} \beta_n \bar{x}_n = \beta \bar{x}.$$

Proof: (1) Suppose $\bar{x}_n \to \bar{x}$. Given $\epsilon > 0$ there exists a positive integer

N such that $|\bar{x}_n - \bar{x}| < \epsilon \ \forall n \ge N$

$$\Rightarrow \sqrt{\sum_{j=1}^{k} (\alpha_{j,n} - \alpha_j)^2} < \epsilon \ \forall \ n \ge N$$
$$\Rightarrow \sum_{j=1}^{k} (\alpha_{j,n} - \alpha_j)^2 < \epsilon^2 \ \forall \ n \ge N$$
$$\Rightarrow (\alpha_{j,n} - \alpha_j)^2 < \sum_{j=1}^{k} (\alpha_{j,n} - \alpha_j)^2 < \epsilon^2 \ \forall \ n \ge N$$
$$\Rightarrow |\alpha_{j,n} - \alpha_j| < \epsilon \ \forall \ n \ge N, \ 1 \le j \le k$$
$$\therefore \lim_{n \to \infty} \alpha_{j,n} = \alpha_j \ 1 \le j \le k$$

Conversely, Suppose

$$\lim_{n \to \infty} \alpha_{j,n} = \alpha_j, \ (1 \le j \le k)$$

Let $\epsilon > 0$ be given, there exists a positive integer N_j such that $|\alpha_{j,n} - \alpha_j| < \epsilon/\sqrt{k} \quad \forall n \ge N_j$. Let $N = max\{N_1, N_2, ..., N_k\}$.

$$\Rightarrow |x_n - \bar{x}| = \sqrt{\sum_{j=1}^k (\alpha_{j,n} - \alpha_j)^2}$$

$$< \sqrt{\sum_{j=1}^k (\epsilon/\sqrt{k})^2} \ \forall \ n \ge N$$

$$< \sqrt{k\epsilon^2/k} = \sqrt{\epsilon^2}$$

$$= \epsilon \ \forall \ n \ge N$$

$$\therefore |x_n - \bar{x}| < \epsilon \ \forall \ n \ge N$$

$$\therefore (\bar{x}^n) \to \bar{x} \text{ as } n \to \infty.$$

(2) Given $\bar{x}_n \to \bar{x}$ and $\bar{y}_n \to \bar{y}$ as $n \to \infty \Rightarrow \alpha_{j,n} \to \alpha_j$; $\gamma_{j,n} \to \gamma_j$ as $n \to \infty$, $1 \le j \le k$ where $\bar{x}_n = (\alpha_{1,n}, \alpha_{2,n}, ..., \alpha_{k,n})$; $\bar{y}_n = (\gamma_{1,n}, \gamma_{2,n}, ..., \gamma_{k,n})$; $\bar{x} = (\alpha_1, \alpha_2, ..., \alpha_k)$ and $\bar{y} = (\gamma_1, \gamma_2, ..., \gamma_k)$. Now $\alpha_{j,n} + \gamma_{j,n} \to \alpha_j + \gamma_j$ as $n \to \infty$, j = 1 to $k \Rightarrow \bar{x}_n + \bar{y}_n \to \bar{x} + \bar{y}$ as $n \to \infty$ (by (1)). Given $\beta_n \to \beta, \bar{x}_n \to \bar{x}$ as $n \to \infty \Rightarrow \beta_n \to \beta, \alpha_{j,n} \to \alpha_j$ as $n \to \infty \forall j \Rightarrow \beta_n \alpha_{j,n} \to \beta \alpha_j$ as $n \to \infty$. (by using (1))

Definition 1.90 Subsequences: Given a sequence $\{p_n\}$ consider a $\{n_k\}$ of positive integers such that $n_1 < n_2 < n_3 \cdots$. Then the sequence $\{p_{n_i}\}$ is called a subsequence of $\{p_n\}$

Note 1.91 If $\{p_{n_i}\}$ converges, its limit is called subsequencial limit of $\{p_n\}$.

20

Theorem 1.92

- 1. If $\{p_n\}$ is a sequence in a compact metric space X. Then some subsequence of $\{p_n\}$ converges to a point of X.
- 2. Every bounded sequence in \mathbb{R}^k contains converges subsequence.

Proof: (1)Let E=Range of $\{p_n\}$.

Case (i): Suppose *E* is finite. Then there is a point *p* in *E* and a sequence $\{n_i\}$ with $n_1 < n_2 < n_3 \cdots$ such that $p_{n_1} = p_{n_2} = \cdots = p$. The subsequence $\{p_n\}$ so obtained converges to *p*.

Case (ii): Suppose *E* is infinite. $\Rightarrow E$ is an infinite subset of a compact metric space *X*. $\Rightarrow E$ has a limit point *p* in *X*. [Theorem 1.57] Choose $n_1, d(p, p_{n_1}) < 1$. Choose $n_2 < n_1$, such that $d(p, p_{n_2}) < 1/2$. Having chosen $n_1, n_2, ..., n_{i-1}$, there exists an integer $n_i > n_{i-1}$ such that $d(p, p_{n_i} < 1/i)$ (: every neighbourhood of *p* contains infinite many point of *E*). Choose $\epsilon > 0$ such that there exists a positive integer *N* such that $\epsilon N > 1$ (Archimedean principle) (i.e.) $N > 1/\epsilon$. Then for every i > N, $d(p, p_{n_i}) < 1/i < 1/N < \epsilon \ \forall i > N \Rightarrow \{p_{n_i}\} \rightarrow p$.

(b) Let $\{p_n\}$ be a bounded sequence in \mathbb{R}^k . \Rightarrow Range of $\{p_n\}$ is bounded. Range of $\{p_n\}$ is a subset of some K-cell *I*. As *I* is compact, by (a) since *I* compact, $\{p_n\}$ contains a convergent subsequence in $I \subset \mathbb{R}^k$. \Rightarrow Every bounded sequence in \mathbb{R}^k has a convergence subsequence.

Definition 1.93 Cauchy Sequence: A sequence $\{p_n\}$ in a metric space X is said it to be a Cauchy sequences, if for every $\epsilon > 0$ there is an integer N such that $d(p_n, p_m) < \epsilon \ \forall n, m \ge N$.

Definition 1.94 *Diameter:* If $E \subset X$ and $S = \{d(a, b) | a, b \in E\}$ then the diameter of $E = \sup S$ (*i.e.*) $dia(E) = \sup\{d(a, b) | a, b \in E\}$.

Note 1.95 If $\{p_n\}$ is a sequence in X, and $E_N = \{p_N, p_{N+1}, ...\}$ and p_n is a Cauchy sequence in X iff

$$\lim_{N \to \infty} dia(E_N) = 0 \text{ or } dia(E_N) \to 0 \text{ as } N \to \infty.$$

- **Theorem 1.96** 1. If \overline{E} is the closure of the set E in a metric space X, then $dia(\overline{E}) = dia(E)$.
 - 2. If $\{k_n\}$ is a sequence of compact sets such that $k_n \supset k_{n+1}$, (n = 1, 2, ...)and if

$$\lim_{n \to \infty} dia(k_n) = 0, \quad then \; \bigcap_{n=1}^{\infty} k_n$$

contains exactly one point.

r

Proof: (1) Since $E \subset \overline{E}$, diameter $E \leq$ diameter \overline{E} . Fix $\epsilon > 0, p, q \in E$ by the definition of \overline{E} , these are points $p', q' \in E$ such that $d(p, p') < \epsilon$ and $d(q, q') < \epsilon$. Now,

$$d(p,q) \le d(p,p') + d(p',q') + d(q',p)$$
$$\le d(p',q') + \epsilon + \epsilon$$
$$= d(p',q') + 2\epsilon$$

Since ϵ is arbitrary, $d(p,q) < d(p',q') \Rightarrow d(p,q) < d(p',q') < \sup d(p',q') = dia(E) \Rightarrow d(p,q) < dia(E) \forall p,q \in \overline{E}$. Taking sup, we get $dia\overline{E} < dia(E)$. \therefore $dia(E) = dia(\overline{E})$.

(2)Let $K = \bigcap_{n=1}^{\infty} K_n \Rightarrow K$ is non-empty. (by Theorem 1.58). To prove: K contains exactly one point. Suppose K contains more than one point, then dia(K) > 0. Also $K \subset K_n \forall n \Rightarrow 0 < dia(K) < dia(K_n) \forall n \Rightarrow 0 < dia(K_n) = 0 \Rightarrow \Leftrightarrow$

$$\lim_{n \to \infty} dia(K_n) = 0$$

 \therefore K contains exactly one point.

Theorem 1.97 A subsequential limit of $\{p_n\}$ in a metric space X form a closed subset of X.

proof: Let E^* be the set of all subsequential limits of $\{p_n\}$ and let q be a limit point of E^* . To prove: $q \in E^*$ Choose n_1 so $p_{n_1} \neq q$. (If no such n_1 exists, E^* has only one point and there is nothing to prove) Put $S = d(p_{n_1}, q)$. Choose $n_2 > n_1$ such that $d(p_{n_2}, q) < \frac{S}{2}$ and $p_{n_2} \neq q(\because q$ is a limit point). Suppose $n_1, n_2, ..., n_{i-1}$ are chosen. Since q is a limit point, there exists $x \in E^*$ such that $d(x, q) < \frac{S}{2^i}$. Since $x \in E^*$ there exists an $n_i > n_{i-1}$ with

$$d(p_{n_i}, x) < \frac{S}{2^i}$$

$$d(p_{n_i}, q) < d(p_{n_i}, x) + d(x, q)$$

$$< \frac{S}{2^i} + \frac{S}{2^i} = \frac{S}{2^{i-1}}$$

(*i.e.*) $d(p_{n_i}, q) < \frac{S}{2^{i-1}}$

 \Rightarrow (i.e.) we get a subsequence $\{p_{n_i}\}$ of $\{p_n\}$ such that p_{n_i} converges to $q \Rightarrow q$ is a subsequential limit of $\{p_n\} \Rightarrow q \in E^*$. Since q is arbitrary, E^* contains all its limit points. $\therefore E^*$ is closed.

Theorem 1.98 (a) In any metric space X, every convergent sequences is a Cauchy sequence.

(b) If X is a compact metric space and if $\{p_n\}$ is a Cauchy sequence in X,

then $\{p_n\}$ converges to some point of X.

(c) In \mathbb{R}^k , every Cauchy sequence converges.

Proof: (a) Let $\{p_n\}$ be a sequence in X such that $\{p_n\}$ converges to p. Given $\epsilon < 0$ there exists a positive integer N such that $(d_{p_n}, p) < \epsilon/2 \ \forall n \ge N$. Now, $\forall n, m \ge N$, $d(p_n, p_m) \le d(p_n, p) + d(p, p_m) < \epsilon/2 + \epsilon/2 = \epsilon \ \forall n, m \ge N$. $\therefore \{p_n\}$ is Cauchy sequence in X.

(b) Let $\{p_n\}$ be a Cauchy sequence in a compact metric space X. For each $N = 1, 2, 3..., E_N = \{p_N, p_{N+1}, ...\}$. Also $\{p_n\}$ is Cauchy sequence \Rightarrow diam $E_N \to 0$ as $N \to \infty \Rightarrow$ diam $\bar{E}_N \to 0$ as $N \to \infty$ [\because diam E_N =diam \bar{E}_N by Theorem 1.96]. Now \bar{E}_N is a closed subset of a compact metric space $X \Rightarrow \bar{E}_N$ is compact and also $\bar{E}_{N+1} \subset \bar{E}_N$ for each N. By Theorem 1.96, $\bigcap_{n=1}^{\infty} \bar{E}_n$ contains exactly one point, p (say) in X. $p \in \bar{E}_N$ for each N. Since diam $\bar{E}_N \to 0$ as $N \to \infty$. Given $\epsilon > 0$ there exists an integer N_0 such that diam $\bar{E}_N < \epsilon \ \forall N \ge N_0 \Rightarrow d(p,q) < \epsilon \ \forall q \in \bar{E}_N \ \forall N \ge N_0$. In particular, $d(p,q) < \epsilon \ \forall q \in \bar{E}_{N_0} \Rightarrow d(p,p_n) < \epsilon \ \forall n \ge N_0$. $\therefore \{p_n\}$ converges to a point in X.

(c) Let $\{p_n\}$ be Cauchy sequence in \mathbb{R}^k . Let $E_N = \{p_N, p_{N+1}, ...\}$. Since $\{p_n\}$ is a Cauchy sequence \Rightarrow diam $E_N \to 0$ as $N \to \infty \Rightarrow$ diam $E_N < 1$ for some N. Let E be the range of the sequence $\{p_n\} \Rightarrow E = \{p_1, p_2...p_{N_1}\} \cup E_N$. As E_N is bounded and $\{p_1, p_2, ..., p_{N-1}\}$ is a finite set. $\therefore E$ is bounded set in $\mathbb{R}^k \Rightarrow \{p_n\}$ is bounded in \mathbb{R}^k . By Heine-Borel theorem E has a compact closure in \mathbb{R}^k . (i.e.) \overline{E} is compact in $\mathbb{R}^k \Rightarrow \{p_n\}$ is a Cauchy sequence in \overline{E} and \overline{E} is compact. By (b), $\{p_n\}$ converges to a point in $\overline{E} \subset \mathbb{R}^k \Rightarrow$ Every Cauchy sequence in \mathbb{R}^k converges.

Definition 1.99 Complete metric space: A metric space X is said to be complete metric space if every Cauchy sequence in X converges to a point in X.

Example 1.100 (i) \mathbb{R}^k is complete.

(ii) Every compact metric space is complete.

Theorem 1.101 Every closed subset E of a complete metric space x is complete.

Proof: Given that E is closed subset of a complete metric space x. To prove: E is complete. Let $\{x_n\}$ be a Cauchy Sequence in $E \Rightarrow \{x_n\}$ is a Cauchy Sequence in x. Given that x is complete. $\Rightarrow \{x_n\}$ converges to a point x in x. \Rightarrow Every neighbourhood of x contains all but finitely many terms of $\{x_n\}$. \Rightarrow Every neighbourhood of x contains a point of $\{x_n\}$ other than x. $[\because x_n \neq x] \Rightarrow N_r(x) \cap E - \{x\} \neq \emptyset \ \forall r > 0 \Rightarrow x$ is a limit point of E. $\Rightarrow x \in E$ $[\because E$ is closed] $\Rightarrow \{x_n\}$ converges to x and $x \in E$. $\therefore E$ is complete.

Definition 1.102 A sequence $\{s_n\}$ of real numbers is said it to be monotonic increasing if $s_n \leq s_{n+1}$ ($\forall n = 1, 2, ...$) and monotonic decreasing if $s_n \geq s_{n+1}$ ($\forall n = 1, 2, ...$). **Note 1.103** $A \{s_n\}$ is said it to be monotonic if it is monotonic increasing or monotonic decreasing.

Theorem 1.104 Suppose $\{s_n\}$ is monotonic then the $\{s_n\}$ converges iff it is bounded.

Proof: Suppose $\{s_n\}$ converges $\Rightarrow \{s_n\}$ is bounded.(by Theorem 1.87) Conversely, suppose $\{s_n\}$ is bounded. Let E be the range of the sequence $\{s_n\}$ and Let s is least upper bound of E. For every $\epsilon > 0$, there exists an integer N such that $s - \epsilon < s_N \le s \Rightarrow s - \epsilon < s_n \le s$ $(\forall n \ge N)(\because s_n$ is monotonic) (If not $s - \epsilon$ would be an upper bound) $\Rightarrow s - \epsilon < s_n \le s < s + \epsilon$ $\forall n \ge N \Rightarrow s - \epsilon < s_n \le s + \epsilon \Rightarrow |s_n - s| < \epsilon \ \forall n \ge N \Rightarrow s_n \to s \text{ as } n \to \infty$

Upper and Lower bounds

Definition 1.105 Let $\{s_n\}$ be a sequence of real numbers with the following properties

- 1. For ever real number M, there is an integer N such that $s_n \ge M \ \forall n \ge N$ then we write $s_n \to \infty$.
- 2. $\forall M$, there is an integer N such that $s_n \leq M, \forall n \geq N$, then we write $s_n \rightarrow -\infty$.

Definition 1.106 Let s_n be a sequence of real numbers, E be the set of numbers x (in extended real number system such that $s_{n_k} \to x$ for all sub sequences $\{s_{n_k}\}$. The set E contains all subsequential limits defined above, plus possible, the number α to $-\alpha$. Let $s^* = \sup E$ and $s_* = \inf E$.

Theorem 1.107 Let $\{s_n\}$ be a sequence of real numbers. E and s^* as defined above. Then s^* has the following properties.

 $(a) \ s^* \in E$

(b) If $x > s^*$ then there is an integer N such that $n > N \Rightarrow s_n < x$

Moreover s^* is the only number with the properties (a) + (b). This result is true for s_* also.

Proof:(a) Case (i): Suppose $s^* = \infty$. Since $\sup E = \infty$, E is not bounded above. Then $\{s_n\}$ is not bounded above and there is a subsequence $\{s_{N_k}\}$ which converges to ∞ . $\therefore \infty$ is a subsequential limit. Hence $\infty \in E$. (i.e.) $s^* \in E$.

Case (ii): Suppose s^* is real. Then E is bounded above. \therefore at least one subsequential limit exists say $\lambda \in E$. $\Rightarrow E$ is non-empty. $\therefore E$ is a non-empty set of real numbers and bounded above also $s^* = \sup E \Rightarrow s^* \in \overline{E}$ [by Theorem 1.41] $\Rightarrow s^* \in E$ [since by Theorem 1.40 E is closed $\Leftrightarrow E = \overline{E}$] **Case (iii):** Suppose $s^* = -\infty \Rightarrow E$ contains only one element namely $(-\infty)$ and there is no subsequential limits. \Rightarrow For any real numbers $s_n > m$ for atmost finite number of values of n. ((i.e.) $s_n \leq N \forall n \geq N$ for some integer N) so that $s_n \to -\infty$. $\therefore s^* = -\infty \in E$ \therefore From all the three cases $s^* \in E$.

(b) Suppose there is a number $x > s^*$ such that $s_n \ge x$ for infinitely many values of n. \Rightarrow There exists a number $y \in E$ such that $y \ge x > s^* \Rightarrow \Leftarrow$ to s^* is the supremum of $E \Rightarrow s_n < x$ for all $n \ge N_1$ for some integer N. Uniqueness: Suppose there are two numbers p and q satisfy both (a) and (b) such that $p \ne q$. Without loss of generality p < q. Choose x such that p < x < q. If x > p, then by (b) there exists a integer N such that $s_n < x < q \ \forall n \ge N \Rightarrow q$ is not in $E \Rightarrow q$ cannot satisfy the property (a). $\therefore s^*$ is unique.

Theorem 1.108 If $s_n \leq t_n \forall n \geq N, N$ is fixed, then

$$\lim_{n \to \infty} \inf s_n \le \lim_{n \to \infty} \inf t_n \text{ and } \lim_{n \to \infty} \sup s_n \le \lim_{n \to \infty} \sup t_n.$$

Proof: Given $s_n \leq t_n$ $\forall n \geq N \Rightarrow \inf s_n \leq t_n$ $\forall n \geq N$. Therefore $\inf s_n \leq t_n$ $\forall n \geq N \Rightarrow$

$$\lim_{n \to \infty} \inf s_n \le \lim_{n \to \infty} \inf t_n$$

Similarly, $s_n \leq t_n \ \forall n \geq N \Rightarrow s_n \leq \sup t_n \ \forall n \geq N \Rightarrow \sup s_n \leq \sup t_n \Rightarrow$

 $\lim_{n \to \infty} \sup \ s_n \le \lim_{n \to \infty} \sup \ t_n.$

Remark 1.109 Sandwitch number: For $0 \le x_n \le s_n$ $\forall n \ge N$ and if $s_n \to 0$ then $x_n \to 0$.

Theorem 1.110 Some Special Sequences: (a) If p > 0 then

$$\lim_{n \to \infty} \frac{1}{n^p} = 0.$$

(b) If p > 0 then

$$\lim_{n \to \infty} \sqrt[n]{p} = 1.$$

(c)

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

(d) If $p > 0, \alpha$ is real then

$$\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$$

(e) If |x| < 1 then

$$\lim_{n \to \infty} x^n = 0.$$

Proof: (a) Given p > 0 there exists an integer N such that $N > \frac{1}{\epsilon^{1/p}}$. Now, $\left|\frac{1}{n^p} - 0\right| = \left|\frac{1}{n^p}\right| \le \frac{1}{N^p} < \epsilon[\because p < 0].$ (b) Case (i): Suppose p > 1. Let $x_n = \sqrt[n]{p} - 1 \ge 0$ [$\therefore p > 1$]. $\therefore \sqrt[n]{p} = 1 + x_n \Rightarrow p = (1 + x_n)^n = 1 + nx_n + n_{c_2}x_n^2 + \ldots + x_n^n \Rightarrow p \ge 1 + nx_n$ [$\therefore x_n \ge 0$] $\Rightarrow p - 1 \ge nx_n \Rightarrow 0 \le x_n \le \frac{p-1}{n}$. Since $\frac{p-1}{n} \to 0$ as $n \to \infty \Rightarrow x_n \to 0$ (by the above remark) \Rightarrow

$$\lim_{n \to \infty} x_n = 0$$

$$\Rightarrow \lim_{n \to \infty} \sqrt[n]{p} = 0$$

$$\Rightarrow \lim_{n \to \infty} \sqrt[n]{p} = 1$$

 $(\sqrt[n]{p}) \to 1 \text{ as } n \to \infty.$

Case (ii): Suppose p = 1. Then $\sqrt[n]{p} = 1 \Rightarrow (\sqrt[n]{p}) = 1 \rightarrow 1$ as $n \rightarrow \infty$. **Case (iii):** Suppose $0 . Now, <math>p < 1 \Rightarrow 1/p > 1$. By Case (i) $\sqrt[n]{p} \rightarrow 1$ as $n \rightarrow \infty$. $\Rightarrow \frac{1}{\sqrt[n]{p}} \rightarrow 1$ as $n \rightarrow \infty$. $\Rightarrow \sqrt[n]{p} \rightarrow 1$ as $n \rightarrow \infty$. (c)

$$\lim_{n \to \infty} \sqrt[n]{n} =$$

Let $x_n = \sqrt[n]{n-1} \ge 0$ ($: n \ge 1$) $\Rightarrow \sqrt[n]{n} = 1 + x_n \Rightarrow n = (1+x_n)^n = 1 + nx_n + n_{c_2}x_n^2 + \dots + x_n^n, n \ge n_{c_2}x_n^2 \Rightarrow n \ge \frac{n(n-1)}{2}x_n^2 \Rightarrow x_n^2 \le \frac{2}{n-1}$ $\forall n \ge 2 \Rightarrow 0 \le x_n \le \sqrt{\frac{2}{n-1}} \quad \forall n \ge 2.$ Now, $\sqrt{\frac{2}{n-1}}$ as $n \to \infty$. By the above remark $x_n \to 0$ as $n \to \infty$. $\therefore \sqrt[n]{n} \to 1$ as $n \to \infty$.

(d) Let k be any positive integer such that $k > \alpha$. Let n > 2k,

 \Rightarrow

$$\begin{split} (1+p)^n &= 1 + np + \frac{n(n-1)}{2}p^2 + \dots + n_{c_{k-1}}p^{k-1} + \dots + p^n \\ &\geq n_{c_k}p^k \\ &= \frac{n(n-1)\cdots(n-(k-1))}{1\cdot 2\cdots k}p^k \\ &> \frac{\frac{n}{2}\frac{n}{2}\cdots\frac{n}{2}}{k!}p^k \\ &> \frac{\frac{n^k}{2^k}p^k}{k!}p^k \\ &> \frac{n^k}{2^k}\frac{p^k}{k!} \\ \frac{1}{(1+p)^n} &< \frac{2^k}{n^k}\frac{k!}{p^k} \\ &\frac{n^\alpha}{(1+p)^n} &< \frac{2^kk!}{p^k}\frac{1}{n^{k-\alpha}} \\ &\leq \frac{n^\alpha}{(1+p)^n} < \frac{2^kk!}{p^k}\frac{1}{n^{k-\alpha}} \end{split}$$

Also $\frac{1}{n^{k-\alpha}} \to 0$ as $n \to \infty(\because k - \alpha > 0$ by (a)) By the above remark,

 $\Rightarrow 0$

$$\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$$

(e) $|x| < 1 \Rightarrow \frac{1}{|x|} > 1 \Rightarrow \frac{1}{|x|} = 1 + p, p > 0$, put $\alpha = 0$ in (d). We have $\frac{1}{(1+p)^n} \to 0$ as $n \to \infty \Rightarrow |x|^n \to 0$ as $n \to \infty \Rightarrow x^n \to 0$ as $n \to \infty$.

2. UNIT II

Series: Let

et

$$\sum_{n=1}^{\infty} a_n$$

be a series and let

$$s_n = a_1 + a_2 + \ldots + a_n = \sum_{n=1}^{\infty} a_k$$

the *nth* partial sum of the series $\sum a_n$. we can form a sequence $\{s_n\}$ and this $\{s_n\}$ is called sequence of partial sum of the series.

Definition 2.1 If $\{s_n\} \to s \text{ as } n \to \infty$ then we write

$$\sum_{n=1}^{\infty} a_n = s$$

and the series $\sum a_n$ converges to s. s is called sum of the series.

Note 2.2 1. If $\{s_n\}$ diverges then the series is said to diverge.

2. For convergence we shall consider the series of the form

$$\sum_{n=0}^{\infty} \alpha_n.$$

Theorem 2.3 A series of non-negative term converges iff its partial sum forms a bounded sequence.

Proof: Suppose $\sum a_n$ converges. $\Rightarrow \{s_n\}$ converges. $\Rightarrow \{s_n\}$ is bounded. (Theorem 1.85(c)). Conversely: Suppose $\{s_n\}$ is bounded. Then $\{s_n\}$ is monotonic increasing $\Rightarrow \{s_n\}$ converges. (Theorem 1.102) $\Rightarrow \sum a_n$ converges.

Theorem 2.4 Cauchy's Criterian: $\sum a_n$ converges iff $\forall \epsilon > 0$, there exists an integer N such that

$$\left|\sum_{k=n}^{m} a_k\right| < \epsilon \quad \text{if } m \ge n \ge N.$$

Proof: Let $\sum a_n$ converges. Let $s_n = a_1 + a_2 + ... + a_n \Rightarrow \{s_n\}$ converges. $\Rightarrow \{s_n\}$ is Cauchy sequence. Given $\epsilon > 0$ there exists an integer N such that $|s_m - s_n| < \epsilon \quad \forall m \ge n \ge N \Rightarrow$

$$\left|\sum_{k=n}^{m} a_k\right| < \epsilon \ \forall m \ge n \ge N.$$

Conversely, suppose

$$\left|\sum_{k=n}^{m} a_k\right| < \epsilon \ \forall m \ge n \ge N....(1)$$

for all $\epsilon > 0$ and for some integer N. To prove, $\sum a_n$ converges. (1) $\Rightarrow |s_m - s_n| < \epsilon \quad \forall m \ge n \ge N$. Every Cauchy sequence converges. $\Rightarrow \{s_n\}$ converges. $\Rightarrow \sum a_n$ converges.

Theorem 2.5 If $\sum a_n$ converges, then

$$\lim_{n \to \infty} a_n = 0.$$

Proof: Given $\sum a_n$ converges. By Cauchy's criterian there exists N such that

$$\begin{split} \left|\sum_{k=n}^{m} a_{k}\right| < \epsilon \ \forall m \geq n \geq N. \text{ Taking } m = n,\\ |a_{n}| < \epsilon \ \forall n \geq N\\ \Rightarrow a_{n} \to 0 \text{ as } n \to \infty. \end{split}$$

Note 2.6 Converse of the above theorem and need not be true. Consider $\{1/n\}, 1/n \to 0 \text{ as } n \to \infty$. But $\sum 1/n$ diverges.

Theorem 2.7 Comparison test:

(a) If $|a_n| < C_n$ for $n \ge N_0$ where N_0 is some fixed integer and if $\sum C_n$ converges then $\sum a_n$ converges.

(b) If $a_n \ge d_n \ge 0$ $\forall n \ge N_0$ and if $\sum d_n$ diverges then $\sum a_n$ also diverges. **Proof:** (a) Given $\sum C_n$ converges. By Cauchy's criterion. Given $\epsilon > 0$ there exists +ve integer $N \ge N_0$ such that

$$\begin{vmatrix} \sum_{k=n}^{m} a_k \\ | < \epsilon \ \forall m \ge n \ge N. \end{vmatrix}$$

Now $\begin{vmatrix} \sum_{k=n}^{m} a_k \\ | \le \sum_{k=n}^{m} |a_k| \le \sum_{k=n}^{m} C_k < \epsilon \ \forall m \ge n \ge N$
 $\therefore \begin{vmatrix} \sum_{k=n}^{m} a_k \\ | < \epsilon \ \forall m \ge n \ge N. \end{vmatrix}$

 $\therefore \sum a_n$ converges.

(b) Given $0 \le d_n \le a_n$ $n \ge N_0$. Suppose $\sum a_n$ converges. $\sum d_n$ converges by (a) $\Rightarrow \Leftarrow : : : \sum a_n$ diverges.

Series of non negative terms:

Theorem 2.8 If $0 \le x < 1$ then

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \ x \ge 1$$

then the series diverges.

Proof: Let $\{s_n\}$ be a sequence of partial sum of the series $\sum x^n$. Suppose $0 \le x \le 1$ $s_n = 1 + x + x^2 + \ldots + x^n = \frac{1-x^n}{1-x}$. Since $x^{n+1} \to 0$ as $n \to \infty$ if $0 \le x < 1$ (by Theorem 1.108(e)) $\Rightarrow s_n \to \frac{1}{1-x}$ as $n \to \infty$ if $0 \le x < 1 \Rightarrow \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. suppose x = 1, $s_n = n + 1 \Rightarrow \{s_n\}$ diverges. $\Rightarrow \{s_n\}$ unbounded diverges. $\therefore \sum x^n$ diverges. Suppose $x > 1 \Rightarrow x^n > 1 \Rightarrow \sum x^n > \sum 1$ ($0 \le 1 < x$). $\therefore \sum 1$ is diverges. \therefore By comparison test. $\sum x^n$ diverges.

Theorem 2.9 Cauchy's condensation test: Suppose $a_1 \ge a_2 \ge ... \ge 0$ then the series

$$\sum_{n=1}^{\infty} a^n$$

converges iff

$$\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \dots$$

converges.

Proof: Let $s_n = a_1 + a_2 + ... + a_n$; $t_k = a_1 + 2a_2 + ... + 2^k a_2^k$. Case (i): $n < 2^k$

$$s_n \le a_1 + (a_2 + a_3) + \dots + (a_{2^k} + a_{2^{k+1}} + \dots + a_{2^{k+1}-1})$$

$$\le a_1 + 2a_2 + \dots + 2^k a_{2^k}$$

$$= t_k$$

$$s_n \le t_k \dots \dots (1)$$

Case (ii): $n < 2^k$

$$s_n \ge a_1 + a_2 + (a_3 + a_4) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k})$$

$$\ge \frac{a_1}{2} + a_2 + 2a_4 + \dots + 2^{k-1}a_{2^k}$$

$$2s_n \ge a_1 + 2a_2 + 2^2a_4 + \dots + 2^ka_{2^k} = t_k$$

$$2s_n \ge t^k \dots \dots (2)$$

From (1) and (2), $\{s_n\}$ and $\{t_n\}$ are either both bounded or both unbounded. (i.e.) $\{s_n\}$ is bounded $\Leftrightarrow \{t_k\}$ is bounded. $\Rightarrow \sum a_n$ converges. $\Leftrightarrow \sum 2^k a_{2^k}$ converges. (by Theorem 2.3) **Theorem 2.10** $\sum \frac{1}{n^p}$ converges if p > 1 and $\sum \frac{1}{n^p}$ converges if $p \le 1$. **Proof:** $\{\frac{1}{n}\}$ is a decreasing sequence. $\Rightarrow \frac{1}{n} \ge \frac{1}{n+1} \Rightarrow \frac{1}{n^p} \ge \frac{1}{(n+1)^p} \quad \forall p > 0$ **Case (i):** Suppose p > 0. Consider the series

$$\sum_{k=0}^{\infty} 2^k a_{2^k} = \sum_{k=0}^{\infty} 2^k \frac{1}{2^{kp}}$$
$$= \sum_{k=0}^{\infty} 2^{k-kp}$$
$$= \sum_{k=0}^{\infty} 2^{k(1-p)}$$

By Theorem reft16, $\sum x^k$ converges if $0 \le x < 1$, diverges if $x \ge 1$. Now,

$$\sum_{k=0}^{\infty} 2^{k(1-p)} = \sum_{k=0}^{\infty} (2^{1-p})^k \text{ converges if } p > 1.$$
$$\sum_{k=0}^{\infty} (2^{1-p})^k \text{ diverges if } p \le 1.$$

Case (ii): If $p \leq 0$ then $\{\frac{1}{n^p}\}$ is an unbounded sequence $\Rightarrow \{\frac{1}{n^p}\}$ diverges. $\therefore \sum 1/n^p$ diverges if $p \leq 0$. $\therefore \sum \frac{1}{n^p}$ converges p > 1. $\sum \frac{1}{n^p}$ diverges $p \leq 1$.

Theorem 2.11 If p > 1,

$$\sum_{k=0}^{\infty} \frac{1}{n(\log n)^p}$$

converges and if $p \leq 1$ this series diverges.

Proof: $\{\log n\}$ is an increasing sequence. $\Rightarrow \frac{1}{n(\log n)^p}$ is a decreasing sequence. Consider

$$\sum_{k=1}^{\infty} 2^k \frac{1}{2^k (\log 2^k)^p} = \sum_{k=1}^{\infty} \frac{1}{(k \log 2)^p}$$
$$= \frac{1}{(\log 2)^p} \sum_{k=1}^{\infty} \frac{1}{k^p}$$

converges if p > 1, diverges of $p \le 1$. [By Theorem 2.10] By Cauchy's condensation test,

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$

converges if p > 1, diverges of $p \le 1$.

Problem 2.12 Test the converges of the series

$$\sum_{n=3}^{\infty} \frac{1}{n(\log n) \cdot \log(\log n)}.$$

Proof: $\{n \log n \, \log(\log n)\}$ is an increasing sequence. $\Rightarrow \{\frac{1}{n \log n \, \log(\log n)}\}\$ is a decreasing sequence. Consider,

$$\begin{split} \sum_{k=2}^{\infty} 2^k a_{2^k} &= \sum_{k=2}^{\infty} 2^k \frac{1}{2^k \log 2^k \log(\log 2^k)} \\ &= \sum_{k=2}^{\infty} \frac{1}{k \log 2 \log(k \log 2)} \\ &= \frac{1}{\log 2} \sum_{k=2}^{\infty} \frac{1}{k \log(k \log 2)} \end{split}$$

Now

$$\begin{split} \log 2 &< 1 \\ \Rightarrow k \log 2 &< k \ k > 0 \\ \Rightarrow \log(k \log 2) &< \log k \\ \Rightarrow k \log(k \log 2) &< k (\log k) \\ \Rightarrow \frac{1}{k \log(k \log 2)} &> \frac{1}{k \log k} \\ \Rightarrow \sum_{k=2}^{\infty} \frac{1}{k \log(k \log 2)} &> \sum_{k=2}^{\infty} \frac{1}{k \log k} \end{split}$$

By previous problem put $p = 1 \sum \frac{1}{k \log k}$ diverges. By comparison test $\sum \frac{1}{k \log(k \log 2)}$ diverges $\Rightarrow \frac{1}{\log 2} \sum \frac{1}{k \log(k \log 2)}$. \therefore By condensation test, the given sequence diverges.

Definition 2.13 $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + ... = \sum \frac{1}{n!}$.

Note 2.14 The above definition is well defined. Proof: Now $e = \sum 1/n!$. Let

$$\begin{split} s_n &= \sum_{k=0}^n \frac{1}{k!} = 1 + \frac{1}{1!} + \ldots + \frac{1}{n!} \\ &< 1 + \frac{1}{1^2} + \frac{1}{2^1} + \frac{1}{2^2} + \ldots + \frac{1}{2^{n-1}} \\ &< 1 + \frac{1}{1^2} + \frac{1}{2^1} + \frac{1}{2^2} + \ldots + \frac{1}{2^n} + \ldots \\ &= 1 + \frac{1}{1 - \frac{1}{2}} \\ &= 1 + \frac{1}{\frac{1}{2}} = 1 + 2 \\ &= 3 \\ \therefore s_n < 3 \ \forall n \end{split}$$

32

 $\therefore \{s_n\}$ is a bounded sequence. Since $\{s_n\}$ is monotonic increasing and bounded, $\{s_n\}$ is converges. $\Rightarrow \sum \frac{1}{n!}$ converges. $\therefore e$ is well defined.

Theorem 2.15

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e. \ Let \ s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}.$$

Proof: Let

$$\begin{split} t_n &= (1 + \frac{1}{n})^n \\ &= 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2} \frac{1}{n^2} + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \frac{1}{n^3} + \dots \\ &+ \frac{n(n-1) \cdots 2 \cdot 1}{1, 2 \cdots n} \frac{1}{n^n} \\ &= 1 + 1 + \frac{1(1 - \frac{1}{n})}{2} + \frac{1(1 - \frac{1}{n})(1 - \frac{2}{n})}{1 \cdot 2 \cdot 3} + \dots \\ &+ (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{(n-2)}{n})(1 - \frac{\overline{n-1}}{n}) \frac{1}{n!} \dots (a) \\ &< 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \\ &= s_n \\ \therefore t_n < s_n \ \forall n \end{split}$$

$$\Rightarrow \lim_{n \to \infty} \sup t_n < \lim_{n \to \infty} \sup S_n = e....(1)[:: \lim_{n \to \infty} s_n = e]$$

Consider $m \leq n$, Using (a)

$$t_n \ge 1 + 1 + (1 - \frac{1}{n})\frac{1}{2!} + \dots + (1 - \frac{1}{n})(1 - \frac{2}{n})\cdots(1 - \frac{m-1}{n})\frac{1}{m!}$$

keeping m, fixed and letting $n \to \infty$ we have

$$\lim_{n \to \infty} \inf t_n \ge 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{m!} = s_m$$
$$\lim_{n \to \infty} \inf t_n \ge s_m \ \forall m$$
Letting $m \to \infty \Rightarrow \lim_{n \to \infty} \inf t_n \ge e_{\dots}(2)$

From (1) and (2),

$$\lim_{n \to \infty} \inf t_n \ge e \ge \lim_{n \to \infty} \sup t_n \dots (B)$$
$$\lim_{n \to \infty} \inf t_n \ge \lim_{n \to \infty} \sup t_n$$
Always
$$\lim_{n \to \infty} \inf t_n \le \lim_{n \to \infty} \sup t_n$$
$$\Rightarrow \lim_{n \to \infty} \inf t_n = \lim_{n \to \infty} \sup t_n$$
$$\Rightarrow \lim_{n \to \infty} t_n \text{ exists and } \lim_{n \to \infty} t_n = e$$
$$\therefore \lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

Lemma 2.16 Prove that $0 < e - s_n < \frac{1}{n!n}$. **Proof:** Clearly, $e - s_n > 0 \ \forall n$

$$e - s_n = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots$$

= $\frac{1}{(n+1)!} [1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots]$
< $\frac{1}{(n+1)!} (1 + \frac{1}{n+2} + \frac{1}{(n+1)^2} + \dots)$
= $\frac{1}{(n+1)!} (\frac{1}{1 - \frac{1}{n+1}})$
= $\frac{1}{(n+1)!} (\frac{n+1}{n+1-1})$
= $\frac{1}{n! \frac{1}{n}}$
 $\therefore 0 < e - s_n < \frac{1}{n!n}$

Lemma 2.17 Prove that e is irrational.

Proof: Suppose *e* is rational. $e = \frac{p}{q}, q \neq 0$; gcd(p,q) = 1; *p*, *q* are integer. By the above lemma $0 < e - S_q < \frac{1}{q!q} \Rightarrow 0 < (e - s_q)q! < \frac{1}{q}$ (1) Now, *q*!*e* is an integer. [$\therefore q!e = q!\frac{p}{q} = (q-1)!p$ = an integer]

$$\begin{aligned} q!s_q &= q![1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{q!}] \\ &= q! + q! + 3 \cdot 4 \cdots q + \dots + q + 1 \\ &= \text{an integer} \\ q &\geq 1 \Rightarrow \frac{1}{q} \leq 1 \\ (1) &\Rightarrow 0 < q!(e - s_q) < \frac{1}{q} \leq 1 \\ &\quad 0 < (e - s_q)q! < 1 \end{aligned}$$

This means that $q!(e-s_q)$ is an integer lying between 0 and 1. $\therefore e$ must be irrational.

Root and Ratio test

...

Theorem 2.18 Root test: Given $\sum a_n$ and

$$\alpha = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$$

(a) if $\alpha < 1$, $\sum a_n$ converges. (b) if $\alpha > 1$, $\sum a_n$ diverges.
(c) if $\alpha = 1$ then the test gives no information.

Proof: (a) If $\alpha < 1$ then there exists β with $\alpha < \beta < 1$, and an integer N such that $\sqrt[n]{|a_n|} < \beta \ \forall n \ge N$ (By Theorem 1.105(b)), $|a_n| < \beta^n \ \forall n \ge N$. But $\sum \beta^n$ converges ($\because \beta < 1$). By comparison test, $\sum a_n$ converges.

(b) If $\alpha > 1$, by Theorem 1.105(a); there is a sequence $\{n_k\}$ such that $\sqrt[n_k]{|a_{n_k}|} \to \alpha$ as $k \to \infty$ [:: α is a subsequence limit] $\Rightarrow |a_n| > 1$ for infinitely many values of n. $\{a_n\}$ does not convergers to 0. $\therefore \sum a_n$ diverges [By Theorem 2.5]

(c) Suppose $\alpha = 1$. Consider the series $\sum \frac{1}{n}$ and $\sum \frac{1}{n^2}$. Take $a_n = \frac{1}{n}$. Then

$$\begin{split} a_n^{\frac{1}{n}} &= (\frac{1}{n})^{\frac{1}{n}} \\ &= \frac{1}{n^{\frac{1}{n}}} \\ \lim_{n \to \infty} \sup a_n^{\frac{1}{n}} &= \lim_{n \to \infty} \sup \frac{1}{n^{\frac{1}{n}}} = 1 \ [\because \lim_{n \to \infty} n^{\frac{1}{n}} = 1] \end{split}$$

Then $\sum 1/n$ diverges. $a_n = 1/n^2$

$$\lim_{n \to \infty} \sup a_n^{\frac{1}{n}} = \lim_{n \to \infty} \sup(\frac{1}{n^{\frac{1}{n}}})^2 = 1$$

But $\sum \frac{1}{n^2}$ converges. \therefore The root test fails.

Theorem 2.19 Ratio test: Consider the series $\sum a_n$ (a) It converges if

$$\lim_{n\to\infty} \sup \left|\frac{a_{n+1}}{a_n}\right| < 1$$

(b) It diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1 \ \forall n \ge N$. **Proof:** (a) Let

$$\alpha = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right| < 1 \ \text{ and } \alpha < 1.$$

Then there exists β with $\alpha < \beta < 1$ and an integer N such that

$$\begin{split} \left| \frac{a_{n+1}}{a_n} \right| < \beta \ \forall n \ge N. \\ |a_{n+1}| < \beta \ |a_n| \ \forall n \ge N. \\ |a_N + 1| < \beta \ |a_N| \\ |a_N + 2| < \beta \ |a_{N+1}| < \beta \cdot \beta \cdot |a_N| = \beta^2 \ |a_N| \\ & \cdot \\ &$$

Now $\sum \beta^n$ converges $(:: \beta < 1) :: \sum \alpha_n$ converges, by comparison test. (b)

$$\begin{aligned} \left|\frac{a_{n+1}}{a_n}\right| &\geq 1 \ \forall n \geq n_0 \\ \Rightarrow |a_{n+1}| \geq |a_N| \ \forall n \geq n_0 \\ \Rightarrow (a_n) \not\rightarrow 0 \ \text{ as } n \rightarrow \infty [\because |a_n| \text{ is an increasing sequence.} \\ (i.e.) &0 \leq |a_1| \leq |a_1| \leq \dots] \\ \Rightarrow \sum a_n \ \text{diverges.} \end{aligned}$$

Note 2.20

$$\lim_{n \to \infty} \sup \left| \frac{a_n + 1}{a_n} \right| = 1 \quad gives \ no \ information.$$

Proof: Consider

$$\lim_{n \to \infty} \sup \left| \frac{a_n + 1}{a_n} \right| = 1$$

Consider the series $\sum \frac{1}{n}$
Now $a_n = \frac{1}{n}$ and $a_{n+1} = \frac{1}{n+1}$
$$\frac{a_{n+1}}{a_n} = \frac{n}{n+1} = \frac{1}{1 + \frac{1}{n}}$$
$$\lim_{n \to \infty} \sup \left| \frac{a_n + 1}{a_n} \right| = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1$$

Observe, $\sum \frac{1}{n}$ diverges. Consider $\sum \frac{1}{n^2}$

$$a_n = \frac{1}{n^2}; \ a_{n+1} = \frac{1}{(n+1)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^2}{(n+1)^2} = \frac{1}{(1+1/n)^2}$$
$$\lim_{n \to \infty} \sup \left| \frac{a_n + 1}{a_n} \right| = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^2} = 1$$

Note that $\sum \frac{1}{n^2}$ converges. $\therefore \lim_{n \to \infty} \sup \left| \frac{a_n + 1}{a_n} \right| = 1$ gives no information.

Problem 2.21 Consider the series $1/2 + 1/3 + 1/2^2 + 1/3^2 +$ Let

$$a_n = \begin{cases} \frac{1}{2^{\frac{n+1}{2}}} & \text{if } n \text{ is odd} \\ \frac{1}{3^{\frac{n}{2}}} & \text{if } n \text{ is even} \end{cases}$$
$$a_n^{1/n} = \begin{cases} \frac{1}{2^{\frac{n+1}{2n}}} & \text{if } n \text{ is odd} \\ \frac{1}{3^{\frac{n}{2n}}} & \text{if } n \text{ is even} \end{cases}$$
$$= \begin{cases} \frac{1}{2^{\frac{1}{2} + \frac{1}{2n}}} & \text{if } n \text{ is even} \\ \frac{1}{3^{\frac{1}{2}}} & \text{if } n \text{ is even} \end{cases}$$
$$\lim_{n \to \infty} \inf \sqrt[n]{|a_n|} = \frac{1}{\sqrt{3}}; \lim_{n \to \infty} \sup \sqrt[n]{|a_n|} = \frac{1}{\sqrt{2}} < 1$$

 $\therefore \sum a_n \ converges$

Note 2.22

$$\lim_{n \to \infty} \sup |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} (\frac{3}{2})^{\frac{n}{2}} \frac{1}{2} = \infty$$
$$\lim_{n \to \infty} \inf |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} (\frac{2}{3})^{\frac{n}{2}} \sqrt{2} = 0$$

Here we observe that when is odd. $|\frac{a_{n+1}}{a_n}| = \frac{2^{\frac{n+1}{2}}}{3^{\frac{n}{2}}} = (\frac{2}{3})^{\frac{n}{2}}\sqrt{2} \le 1 \forall odd$ $n \ge n_0$. \therefore We need not apply ratio test.

Problem 2.23 Test the converges series $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{2}{64} + \dots$ (*i.e.*) $\frac{1}{2} + 1 + \frac{1}{2^3} + \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2^5} + \frac{1}{2^4} + \frac{1}{2^7} + \frac{1}{2^6} + \dots$ Solution:

$$a_n = \begin{cases} \frac{1}{2^n} & \text{if } n \text{ is odd} \\ \frac{1}{2^{n-2}} & \text{if } n \text{ is even} \end{cases}$$
$$a_n^{\frac{1}{n}} = \begin{cases} \frac{1}{2} & \text{if } n \text{ is odd} \\ \frac{1}{2^{1-\frac{2}{n}}} & \text{if } n \text{ is even} \end{cases}$$

$$\lim_{n \to \infty} \sup a_n^{\frac{1}{n}} = \frac{1}{2} < 1$$

 $\therefore \sum a_n$ converges.

Note 2.24 Let n is even

$$\frac{a_{n+1}}{a^n} = \frac{2^{n-2}}{2^{n+1}} (\because a_n = \frac{1}{2^{n-2}})$$
$$= \frac{2^n 2^{-2}}{2^n 2^1} = \frac{1}{2^3}$$
$$= 1/8$$

When,
$$n$$
 is odd

$$\frac{a_{n+1}}{a^n} = \frac{1}{2^{n-1}} \cdot 2^n \quad (\because a_n = \frac{1}{2^n})$$
$$= \frac{1}{2^{-1}} = 2$$
$$\therefore |\frac{a_{n+1}}{a^n}| = \frac{1}{8} < 1 \quad \forall n \ge n_0$$

There is no need to apply ratio test.

Remark 2.25

$$\lim_{n \to \infty} \sup |\frac{a_{n+1}}{a^n}| = 2; \ \lim_{n \to \infty} \inf |\frac{a_{n+1}}{a^n}| = \frac{1}{8}.$$

Theorem 2.26 For any sequence $\{c_n\}$ of +ve numbers, (a)

$$\lim_{n \to \infty} \sup \sqrt[n]{c_n} \le \lim_{n \to \infty} \sup \frac{c_{n+1}}{c_n}$$

(b)

$$\lim_{n \to \infty} \inf \frac{c_{n+1}}{c_n} \le \lim_{n \to \infty} \inf \sqrt[n]{c_n}$$

Proof: Let

$$\alpha = \lim_{n \to \infty} \sup \frac{c_{n+1}}{c_n}$$

Suppose $\alpha = \infty$ then there is nothing to prove. If α is a real number, then there exists $\beta > \alpha$ under integer N such that $\frac{c_{n+1}}{c_n} < \beta \ \forall n \ge N$ [by Theorem

$$\begin{aligned} \frac{\frac{c_{N+1}}{c_N} < \beta}{\frac{c_{N+2}}{c_{N+1}} < \beta} \\ \frac{\frac{c_{N+3}}{c_{N+2}} < \beta}{\frac{c_{N+3}}{c_{N+2}} < \beta} \\ & \ddots \\ & \vdots \\ \frac{c_{N+p}}{c_{N+p-1}} < \beta \end{aligned}$$

multiplying all these inequalities

$$\frac{c_{N+p}}{c_N} < \beta^p \ \forall p \ge 0$$
$$\Rightarrow c_{N+p} < \beta^p c_N \ \forall p \ge 0$$

put n = N + p

$$c_n < \beta^{n-N} c_N = (c_N \beta^{-N}) \beta^n$$
$$\Rightarrow c_n^{\frac{1}{n}} < (c_N \beta^{-N})^{\frac{1}{n}} \beta$$
$$\lim_{n \to \infty} \sup c_n^{\frac{1}{n}} < \beta[\because \lim_{n \to \infty} (c_N \beta^{-N})^{\frac{1}{n}} = 1]$$

This is true for every $\beta > \alpha$

$$\therefore \lim_{n \to \infty} \sup c_n^{\frac{1}{n}} \le \alpha = \lim_{n \to \infty} \sup \frac{c_{n+1}}{c_n}$$
$$\therefore \lim_{n \to \infty} \sup \sqrt[n]{c_n} \le \lim_{n \to \infty} \sup \frac{c_{n+1}}{c_n}$$

(b) Let

$$\alpha = \lim_{n \to \infty} \inf \frac{c_{n+1}}{c_n}.$$

If $\alpha = -\infty$ there is nothing to prove. If α is finite then there exists a +ve

real number $\beta < \alpha$, and an integer N such that

multiplying all these inequalities, $\frac{c_{N+p}}{c_N} < \beta^p \ \forall p \geq 0.$ put n=N+p

$$\frac{c_n}{c_N} > \beta^{n-N}$$

$$\Rightarrow c_n > c_N \beta^{n-N}$$

$$\Rightarrow \sqrt[n]{c_n} > \sqrt[n]{c_N \beta^{-N}} \beta$$

$$\lim_{n \to \infty} \inf \sqrt[n]{c_n} > \beta \ (\because \lim_{n \to \infty} \sqrt[n]{c_N \beta^{-N}} = 1)$$

This is true for every $\beta < \alpha$

$$\therefore \lim_{n \to \infty} \inf \sqrt[n]{c_n} \ge \alpha$$
$$= \lim_{n \to \infty} \inf \frac{c_{n+1}}{c_n}$$
$$\therefore \lim_{n \to \infty} \inf \frac{c_{n+1}}{c_n} \le \lim_{n \to \infty} \inf \sqrt[n]{c_n}.$$

Power Series

Definition 2.27 Given $a\{c_n\}$ of complex numbers, the series $\sum_{n=0}^{\infty} c_n x_n$ is called a power series. The numbers c_n are called coefficient of the series and z is a complex number.

- **Note 2.28** 1. The series will converge or diverge depending upon the choice of z.
 - 2. Every power series there is associated a circle of convergence such that the given power series converge if z is the interior of the circle and diverges if z is exterior of the circle.

Theorem 2.29 Given the power series

$$\sum_{n=0}^{\infty} C_n z^n \text{ and } \alpha = \lim_{n \to \infty} \sup \sqrt[n]{|C_n|}$$

and $R = \frac{1}{\alpha}$ then $\sum C_n z^n$ converges if |z| < R and diverges if |z| > R. (R is called the radius of convergence of $\sum C_n z^n$) **Proof:** Let

$$a_n = C_n z^n$$
$$|a_n| = |C_n||z|^n$$
$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sup \sqrt[n]{|C_n|}|z|$$
$$= \alpha |z|$$
$$= \frac{|z|}{R} (\because \alpha = \frac{1}{R})$$

By root test $\sum C_n z^n$ converges if $\frac{|z|}{R} < 1$ (i.e.) if |z| < R and $\sum C_n z^n$ diverges if $\frac{|z|}{R} > 1$ (i.e.) if |z| > R.

Problem 2.30 Find the radius of convergence of $\sum n^n z^n$. Solution: Let

$$c_n = \sum n^n z^n$$

$$1/R = \lim_{n \to \infty} \sup \sqrt[n]{|c_n|}$$

$$= \lim_{n \to \infty} \sup \sqrt[n]{|n_n|}$$

$$= \lim_{n \to \infty} n$$

$$1/R = \infty$$

$$R = 0$$

 $\therefore \sum n^n z^n$ is digit on the whole plane.

Note 2.31

$$\begin{split} \lim_{n \to \infty} \inf \frac{c_{n+1}}{c_n} &\leq \lim_{n \to \infty} \inf \sqrt[n]{n} \\ &\leq \lim_{n \to \infty} \sup \sqrt[n]{c_n} \\ &\leq \lim_{n \to \infty} \sup \frac{n}{c_n} \\ &\leq \lim_{n \to \infty} \sup \frac{c_{n+1}}{c_n} \\ If \lim_{n \to \infty} \frac{c_{n+1}}{c_n} & exists. \Rightarrow \lim_{n \to \infty} \inf \frac{c_{n+1}}{c_n} &= \lim_{n \to \infty} \sup \frac{n}{c_n} \\ &\Rightarrow \lim_{n \to \infty} \inf \sqrt[n]{c_n} &= \lim_{n \to \infty} \sup \sqrt[n]{c_n} \\ ∧ \Rightarrow \lim_{n \to \infty} \sqrt[n]{c_n} &= \lim_{n \to \infty} \sup \sqrt[n]{c_n} \\ &Hence \frac{1}{R} &= \lim_{n \to \infty} \sup \sqrt[n]{c_n} \\ &= \lim_{n \to \infty} \sqrt[n]{c_n} \\ &\frac{1}{R} &= \lim_{n \to \infty} \frac{c_{n+1}}{c_n}. \end{split}$$

Problem 2.32 Find the radius of convergence of $\sum \frac{z^n}{n!}$ Solution: Here, $c_n = \frac{1}{n!}$; $c_{n+1} = \frac{1}{(n+1)!}$. Now,

$$\begin{aligned} \frac{c_{n+1}}{c_n} &= \frac{1}{n+1} \\ \frac{1}{R} &= \lim_{n \to \infty} \frac{c_{n+1}}{c_n} \\ &= \lim_{n \to \infty} \frac{1}{n+1} = \frac{1}{\infty} = 0 \\ R &= \infty \end{aligned}$$

 $\therefore \sum \frac{z^n}{n!}$ converges $\forall z$.

Problem 2.33 Find the radius of convergence of $\sum z^n$ **Solution:** Here, $c_n = 1$; $c_{n+1} = 1$. Now, $\frac{1}{R} = \lim_{n \to \infty} \frac{c_{n+1}}{c_n} = 1 \Rightarrow R = 1$. $\therefore \sum z^n$ converges if |z| < 1 and $\sum z^n$ diverges if |z| > 1.

Problem 2.34 $\sum \frac{z^n}{n^2}$ has radius of converges and prove that the power series converges for all z within $|z| \leq 1$. **Solution:** Here, $c_n = \frac{1}{n^2}$; $c_{n+1} = \frac{1}{(n+1)^2}$. Now,

$$\frac{1}{R} = \lim_{n \to \infty} \frac{c_{n+1}}{c_n}$$
$$= \lim_{n \to \infty} \frac{n^2}{(n+1)^2}$$
$$= \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^2}$$
$$\frac{1}{R} = 1$$
$$R = 1$$

 $\therefore \sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges if |z| < 1. When |z| = 1, consider $|\frac{z^n}{N^2}| = \frac{|z^n|}{|n^2|} = \frac{1}{n^2}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, By comparison test. $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges if |z| < 1 and $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges within and on the circle |z| = 1. $\therefore \sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges $\forall z$ with $|z| \le 1$.

Summation by Parts Given two sequences $\{a_n\}$ and $\{b_n\}$. Put

$$A_n = \sum_{k=0}^n a_k \text{ if } n \ge 0.$$

Put $A_{-1} = 0$. Then for $0 \le p \le q$

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.$$

Proof:

$$A_{n} = a_{0} + a_{1} + \dots + a_{n-1} + a_{n} = A_{n-1} + a_{n}$$

$$A_{n} - A_{n-1} = a_{n}$$

$$\sum_{n=p}^{q} A_{n}b_{n} = \sum_{n=p}^{q-1} (A_{n} - A_{n-1})b_{n}$$

$$= \sum_{n=p}^{q} a_{n}b_{n} - \sum_{n=p}^{q} A_{n-1}b_{n}$$

$$= \sum_{n=p}^{q} A_{n}b_{n} - [A_{p-1}b_{p} + A_{p}b_{p+1} + \dots + A_{q-1}b_{q}]$$

$$= \sum_{n=p}^{q} A_{n}b_{n} - \sum_{n=p-1}^{q-1} A_{n}b_{n+1}$$

$$= \sum_{n=p}^{q-1} A_{n}b_{n} + A_{q}b_{q} - [\sum_{n=p}^{q-1} A_{n}b_{n+1} + A_{p-1}b_{p}]$$

$$= \sum_{n=p}^{q-1} A_{n}(b_{n} - b_{n+1}) + A_{q}b_{q} - A_{p-1}b_{p}.$$

Note 2.35 The above formula is called partial summation formula. It is used to investigate the series of the form $\sum a_n b_n$.

Theorem 2.36 Dirichlet Test:

(a) Suppose the partial summation A_n of ∑ a_n form a bounded sequence.
(b) b₀ ≥ b₁ ≥ b₂ ≥ ...
(c) If

$$\lim_{n \to \infty} b_n = 0.$$

Then $\sum a_n b_n$ converges.

Proof: Given that $\{A_n\}$ is a sequence of partial sum of the series $\sum a_n$. Also given that $\{A_n\}$ is bounded by (a) \Rightarrow There exists a real number M such that $|A_n| \leq M \quad \forall M$. Also by (c) $\lim_{n\to\infty} b_n = 0 \Rightarrow$ Given $\epsilon = 0$ there exists a +ve integer N such that $|b_n - 0| < \epsilon/2M \quad \forall n \geq N$ (i.e.) $|b_n| < \epsilon/2M \quad \forall n \geq N....(1)$ For $N \leq p \leq q$,

$$\begin{split} |\sum_{n=p}^{q} a_{n}b_{n}| &= \sum_{n=p}^{q-1} A_{n}(b_{n} - b_{n+1}) + A_{q}b_{q} - A_{p-1}b_{p} \\ &\leq M |\sum_{n=p}^{q-1} (b_{n} - b_{n+1}) + b_{q} + b_{p}| \\ &= M |(b_{p} - b_{p+1}) + (b_{p+1} - b_{p+2}) + \dots + (b_{q-1} - b_{q}) + b_{q} + b_{p} \\ &= M |(b_{p} - b_{q}) + b_{q} + b_{p}| \\ &= 2M |b_{p}| \\ |\sum_{n=p}^{q} a_{n}b_{n}| \leq 2M |b_{p}| < 2M \cdot \frac{\epsilon}{2M} = \epsilon \ [\because p \geq N \ \text{using (1)}] \\ \therefore |\sum_{n=p}^{q} a_{n}b_{n}| < \epsilon \ \forall q \geq p \geq N \end{split}$$

By cauchy's criterian,

$$\sum_{n=1}^{\infty} a_n b_n$$

converges

Theorem 2.37 (Leibnitz Test) (a) Suppose $|c_1| \ge |c_2| \ge |c_3| \ge ...$ (b) $c_{2m-1} \ge 0, c_{2m} \le 0 (m = 1, 2, 3, ..)$ (c)

$$\lim_{n \to \infty} c_n = 0.$$

Then $\sum c_n$ converges.

Proof: By (b) $c_n = (-1)^{n+1} |c_n|$. Take $a_n = (-1)^{n+1}$, $b_n = |c_n|$. Let $\{A_n\}$ be a sequence of partial summation of the series $\sum a_n = \sum (-1)^{n+1} \Rightarrow \{A_n\}$ is a bounded sequence. Also by (a) $|c_1| \ge |c_2| \ge |c_3| \ge \dots$ Also using (c)

 $\lim_{n \to \infty} |c_n| = 0$

 \therefore By the Dirichlet's Test, $\sum (-1)^{n+1} |c_n| = \sum c_n$ converges.

Note 2.38 The series for which condition (b) holds are called alternating series.

Theorem 2.39 Suppose the radius of convergence of $\sum c_n z^n$ is 1. and suppose $c_0 \ge c_1 \ge c_2...$ and $\lim_{n\to\infty} c_n = 0$. Then $\sum c_n z^n$ converges, at every point of the circle |z| = 1 except possibly at z = 1.

44

Proof: Consider the series $\sum c_n z^n$. Let $\{A_n\}$ be the sequence of partial sums of the series $\sum z^n$

$$\begin{array}{l} \therefore |A_n| = |1+z+z^2+\ldots+z^n| \\ = \left|\frac{1-z^{n+1}}{1-z}\right| = \frac{|1-z^{n+1}|}{|1-z|} \\ \leq \frac{1-|z|^{n+1}}{|1-z|} \\ = \frac{2}{|1-z|} \text{ if } |z| = 1, z \neq 1 \\ |A_n| \leq \frac{2}{|1-z|} \end{array}$$

 $\Rightarrow \{A_n\} \text{ is bounded.}$ Also $c_0 \ge c_1 \ge \dots$ and

$$\lim_{n \to \infty} c_n = 0$$

 \therefore By Dirichels test, $\sum c_n z^n$ converges if |z| = 1 and $z \neq 1$. Also given that the radius convergence of $\sum c_n z^n$ is 1. \therefore The series $\sum c_n z^n$ converges at every point in and on the circle |z| = 1 except at z = 1.

Definition 2.40 Absolute convergence: The series $\sum a_n$ is said to be converge absolutely if $\sum |a_n|$ converges.

Theorem 2.41 If $\sum a_n$ converges absolutely then $\sum |a_n|$ converges. **Proof:** Suppose $\sum a_n$ converges absolutely $\Rightarrow \sum a_n$ converges. Given $\epsilon > 0$ there exists an integer N such that

$$\sum_{k=m}^{n} |a_k| < \epsilon \ \forall n \ge m \ge N....(1)$$

Also

$$|\sum_{k=m}^{n} a_{k}| \leq \sum_{k=m}^{n} |a_{k}| < \epsilon \ \forall n \geq m \geq N \ \text{by}(1)$$
$$\Rightarrow |\sum_{k=m}^{n} a_{k}| < \epsilon \ \forall n \geq m \geq N$$

 $\Rightarrow \sum a_n$ converges. The converse of the above theorem is not true.

Example 2.42 Consider the series $\sum_{n=1}^{\infty} (-1)^{n-1}$ converges but it is not absolutely convergent. **Proof:** For $c_n = (-1)^{n-1}$; $c_{2m-1} = (-1)^{2m-1-1} = 1 \ge 0$; $c_{2m} = (-1)^{2m-1} = 1$ $-1<0;\ |c_n|=1\forall n;\ |c_1|\geq |c_2|\geq \dots$ Now, $\{\frac{1}{n}\}$ is a monotonic decreasing sequence and

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

By Leibnitz test $\sum (-1)^{n-1} \frac{1}{n}$ converges.

$$\sum_{n=1}^{\infty} \left| (-1)^{n-1} \frac{1}{n} \right| = \sum \frac{1}{n} \text{ diverges.}$$

But it is not absolutely convergence. \therefore convergence \Rightarrow absolutely convergence.

Note 2.43 For series of +ve terms convergence and absolutely convergence are the same.

Theorem 2.44 Addition and Multiplication of series: $\sum a_n = A; \ \sum b_n = B.$ Then $\sum (a_n + b_n) = A + B; \ \sum ca_n = cA$ for any fixed c.

Proof: Let $\{A_n\}$ be a sequence of partial sums of the series $\sum a_n$ and $\{B_n\}$ be a sequence of partial sum of the series $\sum b_n$. Now $\sum a_n = A$; $\sum b_n = B \Rightarrow A_n \to A$ and $B_n \to B$ as $n \to \infty \Rightarrow A_n + B_n \to A + B$ as $n \to \infty$

$$(i.e.) \lim_{n \to \infty} (A_n + B_n) = A + B$$
$$\Rightarrow \lim_{n \to \infty} (\sum_{k=1}^n a_k + \sum_{k=1}^n b_k) = A + B$$
$$\Rightarrow \lim_{n \to \infty} \sum_{k=1}^n (a_k + b_k) = A + B$$
$$\sum_{k=1}^\infty (a_k + b_k) = A + B$$

clearly $cA_n \to cA$ as $n \to \infty$

$$(i.e.) \lim_{n \to \infty} c \sum_{k=1}^{n} (a_k = cA)$$
$$\lim_{n \to \infty} \sum_{k=1}^{n} (ca_k) = cA$$
$$\sum_{k=1}^{\infty} ca_k = cA$$

46

Cauchy's Product:

Given $\sum a_n$, $\sum b_n$ we put

$$c_n = b_n a_0 + b_{n-1} a_1 + \dots + b_0 a_n$$

= $\sum_{k=0}^n a_k b_n - k$
 $(\sum a_n)(\sum b_n) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \dots + (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0)$
= $c_0 + c_1 + c_2 + \dots + c_{n-1} + \dots$
= $\sum c_n$

Example 2.45 Cauchy's product of two convergent series need not be convergent.

Proof: Consider the series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}.$$

Here $\left\{\frac{1}{\sqrt{n+1}}\right\}$ to a decreasing sequence and $\frac{1}{\sqrt{n+1}} \to 0$ as $n \to \infty$. \therefore By Leibnitz test,

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}} \text{ converges.}$$

Consider the product of two series

$$\sum a_n = \sum \frac{(-1)^n}{\sqrt{n+1}} = \sum b_n$$

$$Now \ c_n = \sum_{k=0}^n a_k b_{n-k}$$

$$= \sum_{k=0}^n \frac{(-1)^k}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}}$$

$$= (-1) \sum_{k=0}^n \frac{1}{\sqrt{k+1}\sqrt{n-k+1}}$$

$$Now \ (k+1)(n+1-k) = nk+k-k^2+n+1-k$$

$$= nk-k^2+n+1$$

$$= (n+1) - (k^2 - nk)$$

$$= (\frac{n^2}{4} + n + 1) - (k^2 + \frac{n^2}{4} - nk)$$

$$= (\frac{n}{2} + 1)^2 - (k - \frac{n}{2})^2$$

$$\leq (\frac{n}{2} + 1)^2$$

$$\therefore (k+1)(n+1-k) \leq (\frac{n}{2}+1)^2$$

$$\Rightarrow \sqrt{(k+1)(n+1-k)} \leq (n/2+1)$$

$$\Rightarrow \frac{1}{\sqrt{(k+1)(n+1-k)}} \geq \frac{1}{\frac{n}{2}+1}$$

$$|c_n| = \left| (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n+1-k)}} \right|$$

$$= \left| \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n+1-k)}} \right|$$

$$= \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n+1-k)}} \geq \sum_{k=0}^n \frac{1}{\frac{n}{2}+1}$$

$$= \frac{1}{\frac{n}{2}+1} \sum_{k=0}^n 1 = \frac{n+1}{\frac{n}{2}+1} = \frac{2(n+1)}{(n+2)}$$

$$= \frac{2(1+\frac{1}{n})}{1+\frac{2}{n}}$$

$$|c_n| \geq \frac{2(1+\frac{1}{n})}{1+\frac{2}{n}}$$

 $\Rightarrow c_n \text{ does not converges to } 0 \text{ as } n \rightarrow \infty \Rightarrow \sum c_n \text{ diverges.}$

Note 2.46 The product of two convergent series converges if atleast one of the two series converges absolutely.

Theorem 2.47 Merten's Theorem:

(a) Suppose $\sum a_n$ converges absolutely. (b) Suppose $\sum a_n = A$ (c) Suppose $\sum a_n = B$ (d) $c_n = \sum_{k=0}^n a_k b_{n-k} (n = 0, 1, 2...).$ Then ∞

$$\sum_{n=0}^{\infty} c_n = AB.$$

Proof:

$$A_n = \sum_{k=0}^n a_k; \ B_n = \sum_{k=0}^n b_k; \ c_n = \sum_{k=0}^n c_k.$$

Let

$$\begin{split} \beta_n &= B_n - B \ \forall n \\ &= c_0 + c_1 + \ldots + c_n \\ &= a_0 b_0 + (a_0 b_1 + a_1 b_0) + \ldots + (a_0 b_{n-1} + \ldots + a_n b_0) \\ &= a_0 ((b_0 + b_1 + \ldots + b_n) + a_1 (b_0 + b_1 + \ldots + b_{n-1}) + a_n b_0) \\ &= a_0 B_n + a_1 B_{n-1} + \ldots + a_n B_0 \end{split}$$

$$= a_0(B + \beta_n) + a_1(B + \beta_{n-1}) + \dots + a_n(B + \beta_0) (\because \beta_n = B_n - B)$$

= $B(a_0 + a_1 + \dots + a_n) + (a_0\beta_n + a_1\beta_{n-1} + \dots + a_n\beta_0)$
= $BA_n + \gamma_n$ where $\gamma_n = a_0\beta_n + a_1\beta_{n-1} + \dots + a_n\beta_0$

Claim $c_n \to AB$ as $n \to \infty$; $A_n \to A$ as $n \to \infty \Rightarrow BA_n \to AB$ as $n \to \infty$. If enough to prove $\gamma_n \to 0$ as $n \to \infty$. Given $\sum a_n$ converges absolutely. $\Rightarrow \sum |a_n|$ converges.

(*i.e.*)
$$\sum_{0}^{\infty} |a_n| = \alpha$$

Now $\lim_{n \to \infty} \beta_n = \lim_{n \to \infty} (B_n - B)$
 $= B - B$
 $= 0$

Given $\epsilon>0$ there exists an integer N such that

$$\begin{split} |\beta_{n} - 0| &< \epsilon \forall n \ge N \\ \Rightarrow |\beta_{n}| < \epsilon \forall n \ge N.....(1) \\ |\gamma_{n}| &= |a_{0}\beta_{n} + a_{1}\beta_{n-1} + ... + a_{n}\beta_{0}| \\ &= |\beta_{n}a_{0} + \beta_{n-1}a_{1} + ... + \beta_{N}a_{n-N} + \beta_{N-1}a_{n-N+1} + ... + \beta_{0}a_{n}| \\ &\leq |\beta_{n}a_{0} + \beta_{n-1}a_{1} + ... + \beta_{N}a_{n-N}| + |\beta_{N-1}a_{n-N+1} + ... + \beta_{0}a_{n}| \\ &< \epsilon(|a_{0}| + |a_{1}| + ... + |a_{n-N}|) + |\beta_{N-1}a_{n-N+1} + ... + \beta_{0}a_{n}| \text{ By (1)} \\ &< \beta_{N-1}a_{n-N+1} + ... + \beta_{0}a_{n}| + \epsilon(|a_{0}| + |a_{1}| + ... + |a_{n}|) \\ &= \beta_{N-1}a_{n-N+1} + ... + \beta_{0}a_{n}| + \epsilon\alpha \\ \therefore |\gamma_{n}| < |\beta_{N-1}a_{n-N+1} + ... + \beta_{0}a_{n}| + \epsilon\alpha \end{split}$$

keeping N fixed and letting $n \to \infty$ we have

$$\lim_{n \to \infty} \sup |\gamma_n| \le \epsilon \alpha$$

Since ϵ is arbitrary, we have,

$$\lim_{n \to \infty} |\gamma_n| = 0$$

$$\Rightarrow c_n \to AB \text{ as } n \to \infty$$

$$\Rightarrow \sum_{n=0}^{\infty} c_n = AB.$$

3. UNIT III

Continuity and Differentiation

Let X, Y be the metric spaces. Suppose $E \subset X$, f maps E into Y and p is a limit point of E we write $f(x) \to q$ as $x \to p$ or

$$\lim_{x \to p} f(x) = q.$$

If there is a point $q \in Y$ with the following property, for every $\epsilon > 0$ there exists S > 0 such that $d_y(f(x), q) < \epsilon \forall x \in E$ for which $0 < d_X(x, p) < S$. (i.e.)

$$\lim_{x \to p} f(x) = q.$$

if given $\epsilon > 0$ there exists S > 0 such that $0 < d_X(x, p) < S \Rightarrow d_Y(f(x), q) < \epsilon$.

Definition 3.1 Let X and Y be any two metric spaces and $E \subset X$. Let f and g be any complex functions defined on E then we define f + g as follows. (f + g)(x) = f(x) + g(x)

Theorem 3.2 Let X and Y be any two metric spaces and $E \subset X$. p is a limit point of E. Then

$$\lim_{x \to p} f(x) = q \text{ iff } \lim_{n \to \infty} f(p_n) = q$$

for every sequence $\{p_n\}$ in E such that $p_n \neq p$ and

$$\lim_{n \to \infty} p_n = p.$$

Proof: Suppose

$$\lim_{x \to p} f(x) = q$$

⇒ Given $\epsilon > 0$, there exists S > 0 such that $0 < d_X(x,p) < S ⇒ d_Y(f(x),q) < \epsilon \forall x \in E....(1)$

 $\{p_n\}$ is a sequence of points in E such that $\{p_n\} \to p$ as $n \to \infty(p_n \neq p)$ (This is possible $\therefore p$ is a limit point of E) \Rightarrow there exists N depending on S such that $d_X(p_n, p) < S \ \forall n \ge N$. Now By (1) we have, $d_Y(f(p_n), q) < \epsilon \ \forall n \ge N$ (i.e.)

$$\lim_{n \to \infty} f(p_n) = q$$

Conversely, Suppose

$$\lim_{n \to \infty} f(p_n) = q$$

for every $\{p_n\}$ in E such that $p_n \neq p$ and

$$\lim_{n \to \infty} p_n = p$$

To Prove

$$\lim_{x \to p} f(x) = q$$

Suppose this result is false, for some $\epsilon > 0$ and for every S > 0 such that $d_X(x,p) < S \Rightarrow d_Y(f(x),q) \ge \epsilon$. Let $S_n = \frac{1}{n}$, n = 1, 2, 3... For S > 0 without loss of generality choose a point $p \in E$ such that $d_X(p_1,p) < S_1(=1) \Rightarrow d_Y(f(p_1),q) \ge \epsilon$. Similarly, for $S_2 > 0$ choose a point $p_2 \in E$ such that $d_X(p_2,p) < S_1 = (1/2) \Rightarrow d_Y(f(p_2),q) \ge \epsilon$. Proceeding for $S_n > 0$, choose a point $p_n \in E$ such that $d_X(p_n,p) < S_1(=1/n) \Rightarrow d_Y(f(p_n),q) \ge \epsilon$. \therefore we have a sequence $\{p_n\}$ in E such that $d_X(p_n,p) < \frac{1}{n} \Rightarrow d_Y(f(p_n),q) \ge \epsilon$. Now $\{p_n\} \to p$ as $n \to \infty$ $[\because 1/n \to 0$ as $n \to \infty]$. But $f(p_n)$ does not converge to q : our assumption is wrong. Hence for every $\epsilon > 0$ there exists S > 0 such that $d_X(x,p) < S \Rightarrow d_Y(f(x),q) < \epsilon \quad \forall x \in E$.

$$\therefore \lim_{x \to p} f(x) = q.$$

Corollary 3.3 If f has a limit at p then this limit is unique. **Proof:** Suppose q is a limit of f at p. (i.e.)

$$\lim_{x \to p} f(x) = q.$$

 \therefore By the previous theorem, we have

$$\lim_{n \to \infty} f(p_n) = q$$

for every $\{p_n\}$ in E such that $p_n \neq p$ and $p_n \rightarrow p$. But we know that, Every convergence sequence converges to a unique limit. $\therefore f$ has a unique limit at p.

Definition 3.4 Suppose we have two complex f and g then $f \pm g, fg, \lambda f$, $\frac{f}{g}(g \neq 0)$ are defined on a set E as follows.

1.
$$(f+g)(x) = f(x) + g(x)$$

- 2. $(f \cdot g)(x) = f(x) \cdot g(x)$
- 3. $(\lambda f)(x) = \lambda f(x)$
- 4. $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}, g(x) \neq 0.$

Similarly we define \bar{f}, \bar{g} map E into \mathbb{R}^k . Then we can define $\bar{f} \pm \bar{g}, \bar{f}\bar{g}, \lambda \bar{f}, \frac{\bar{f}}{\bar{g}}, (\bar{g} \neq 0)$.

Definition 3.5 Continuous at a point: Suppose X, Y are metric spaces and $E \subset X, p \in E$ and f maps E into Y. Then f is said to be continuous at p if for every $\epsilon > 0$, there exists a $S > 0 \Rightarrow 0 < d_X(x,p) < S \Rightarrow$ $d_Y(f(x), f(p)) < \epsilon \ \forall x \in E$. **Remark 3.6** Suppose f is continuous at $p \Rightarrow$ for every $\epsilon > 0$ there exists S > 0 such that $0 < d_X(x,p) < S \Rightarrow d_Y(f(x), f(p)) < \epsilon \ \forall x \in E \Rightarrow x \in N_S(p) \Rightarrow f(x) \in N_\epsilon(f(p)) \ \forall x \in E \Rightarrow f(N_S(p)) \subset N_\epsilon(f(p)).$

Theorem 3.7 Let X, Y be metric space and $E \subset X$. p is a limit point of E and $f: E \to Y$. Then f is continuous at p iff

$$\lim_{x \to p} f(x) = f(p)$$

Proof: Suppose f is continuous at p. \Leftrightarrow for every $\epsilon > 0$ there exists S > 0 such that $0 < d_X(x,p) < S \Rightarrow d_Y(f(x),f(p)) < \epsilon \quad \forall x \in E \Leftrightarrow$

$$\lim_{x \to p} f(x) = f(p)$$

Theorem 3.8 Suppose X, Y, Z are metric space and $E \subset E$. f maps E into Y, g maps the range of f into Z and h is a mapping of E into Z defined by h(x) = g(f(x)). If f is continuous at $p \in E$ and if g is continuous at f(p) then h is continuous at p. (The function h is called composite of f and g and we write as $h = g \circ f$)

Proof: Let $\epsilon > 0$ be given and g is continuous at f(p). $\therefore \eta > 0$ such that $d_Y(y, f(p)) < \eta \Rightarrow d_Z(g(y), g(f(p))) < \epsilon, y \in f(E).....(1)$ Since f is continuous at p for this $\eta > 0$, there exists S > 0 such that $d_X(x,p) < S \Rightarrow d_Y(f(x), f(p)) < \eta \quad \forall x, y \in E$

$$(i.e.)d_Y(f(x), f(p)) < \eta, f(X) \in f(E)$$

$$\Rightarrow d_Z(g(f(x)), (g(f(p)) < \epsilon \text{ by } (1))$$

$$\Rightarrow d_Z(g \circ f(x), (g \circ f)(p)) < \epsilon$$

$$\Rightarrow d_Z(h(x), h(p)) < \epsilon (h = g \circ f).$$

: we have, $d_X(x,p) < S \Rightarrow d_Z(h(x),h(p)) < \epsilon \ \forall x \in E \Rightarrow h$ is continuous at p.

Theorem 3.9 A mapping f of a metric space X into a metric space Y is continuous on X iff $f^{-1}(E)$ is open in X for every open get E in Y.

Proof: Suppose f is continuous on X. Let V be a open get in Y. To Prove: $f^{-1}(V)$ is open in X. Let $p \in f^{-1}(V)$; $p \in f^{-1}(V) \Rightarrow f(p) \subset V$. Since V is open, there exists $\epsilon > 0$ such that $N_{\epsilon}(f(p)) \subset V$ (1)

Since f is continuous at p, for $\epsilon > 0$ there exists S > 0 such that $f(N_S(p)) \subset N_{\epsilon}(f(p))$ (2)

From (1) and (2), $\Rightarrow f(N_S(p)) \subset V \Rightarrow N_S(p) \subset f^{-1}V \Rightarrow p$ is an interior point of $f^{-1}(V)$. Since p is arbitrary, $f^{-1}(V)$ is open in X. Conversely: Suppose $f^{-1}(V)$ is open in X for every open set V in Y. To Prove: f is continuous at $p, p \in X$. Let $\in > 0$ be given. Consider an open set $N_{\epsilon}(f(p))$ in Y, $f^{-1}(N_{\epsilon}(f(p)))$ is open in X. Now, $\Rightarrow p \in f^{-1}(N_{\epsilon}(f(p))) \Rightarrow p$ is an interior point of $f^{-1}(N_{\epsilon}(f(p))) \Rightarrow$ there exists S > 0 such that $N_S(p) \subset$ $f^{-1}(N_{\epsilon}(f(p))) \Rightarrow f(N_S(p)) \subset N_{\epsilon}(f(p)) \Rightarrow f$ is continuous at p. **Corollary 3.10** A mapping f of a metric space X into a metric space Y is continuous iff $f^{-1}(C)$ is closed in X for every closed set C in Y.

Proof: Let *C* be a closed set in *Y*.*C^c* is open in $Y \Rightarrow f^{-1}(C^c)$ is open in *X*. (by Theorem 3.9) $\Rightarrow [f^{-1}(C)]^c$ is open in $X \Rightarrow f^{-1}(C)$ is closed in *X*. Conversely: Suppose $f^{-1}(C)$ is closed in *X* for every closed set *C* in *Y*. To Prove: *f* is continuous on *X*. Let *A* be an open set in $Y \Rightarrow A^c$ is closed in $Y \Rightarrow f^{-1}(A^c)$ is closed in *X*. (by our assumption) $\Rightarrow [f^{-1}(A)]^c$ is closed in $X \Rightarrow f^{-1}(A)$ is open in *X*. $\Rightarrow f$ is continuous on *X*. Let *A* be an open set in *Y* is closed in *Y* is closed in *Y*. To prove: *f* is closed in *X*. (by our assumption) $\Rightarrow [f^{-1}(A)]^c$ is closed in *X* is open in *X*. $\Rightarrow f$ is continuous on *X*. (by the previous theorem)

Theorem 3.11 Let f and g be complex continuous function in a metric space X, then f + g, $f \cdot g$, $\frac{f}{g}(g \neq 0)$ are continuous on X.

Proof: At isolated point of X there is nothing prove. Fix a point $p \in X$ and suppose p is a limit point of X. Since f and g are continuous at p.

$$\lim_{x \to p} f(x) = f(p); \ \lim_{x \to p} g(x) = g(p)$$

Now,

$$\lim_{x \to p} (f+g)(x) = \lim_{n \to \infty} (f+g)p_n$$

where $p_n \to p$ as $n \to \infty$ and $p_n \neq p$

$$\lim_{x \to p} (f+g)(x) = \lim_{n \to \infty} (f(p_n) + g(p_n))$$
$$= \lim_{n \to \infty} f(p_n) + \lim_{n \to \infty} g(p_n)$$
$$= f(p) + g(p)$$

similarly the other results follow.

Theorem 3.12 Let $f_1, f_2, ..., f_k$ be real functions in a metric space X. Let \overline{f} be the mapping X into \mathbb{R}^k . defined by $\overline{f}(x) = (f_1(x), f_2(x), ..., f_k(x))x \in X$. Then

(a) \bar{f} is continuous iff each of the functions $f_1, f_2, ..., f_k$ is continuous.

(b) \bar{f} and \bar{g} are continuous mapping of X into \mathbb{R}^k then $\bar{f} + \bar{g}, \bar{f} \cdot \bar{g}$ are continuous on $X(\underline{f}_1, \underline{f}_2, ..., f_k$ are called components of \bar{f}).

Proof: Suppose \overline{f} is continuous at every $p \in X$. Then given $\epsilon > 0$ there exists S > 0 such that

$$|\bar{f}(x) - \bar{f}(p)| < \epsilon \text{ if } 0 < d_X(x, p) < S$$

$$\Rightarrow \left(\sum_{i=1}^k (f_i(x) - f_i(p))^2\right)^{1/2} < \epsilon \text{ if } 0 < d_X(x, p) < S$$

$$\Rightarrow |f_i(x) - f_i(p)| < \left(\sum_{i=1}^k (f_i(x) - f_i(p))^2\right)^{1/2} < \epsilon \forall i = 1, 2, ..., k$$

$$\Rightarrow |f_i(x) - f_i(p)| < \epsilon \forall i = 1, 2, ..., k \text{ if } 0 < d_X(x, p) < S$$

⇒ each f_i is continuous at p, $(1 \le i \le k, p \in X)$ ⇒ each f_i is continuous on X, $(1 \le i \le k)$. Conversely, Suppose f_i is continuous on X for each $i = 1, ..., k \Rightarrow f_i$ is continuous at every $p \in X \Rightarrow$ Given $\epsilon > 0$ there exists $S_i > 0$ such that $0 < d_X(x, p) < S_i \Rightarrow |f_i(x) - f_i(p)| < \frac{\epsilon}{\sqrt{k}} \forall i = 1, 2, ..., k$. Let $S = min(S_1, S_2, ..., S_k)$. Now,

$$0 < d_X(x,p) < S_i \Rightarrow |f_i(x) - f_i(p)| < \frac{\epsilon}{\sqrt{k}} \quad \forall i = 1, 2, ..., k$$

$$\Rightarrow |f_i(x) - f_i(p)|^2 < \frac{\epsilon^2}{(\sqrt{k})^2}$$

$$\Rightarrow \sum_{i=1}^k |f_i(x) - f_i(p)|^2 < \frac{\epsilon^2}{k} \cdot k$$

$$= \epsilon^2$$

$$\Rightarrow \sqrt{\sum_{i=1}^k |f_i(x) - f_i(p)|^2} < \epsilon$$

$$\Rightarrow |\bar{f}(x) - \bar{f}(p)| < \epsilon$$

$$(i.e.)0 < d_X(x,p) < S \Rightarrow |\bar{f}(x) - \bar{f}(p)| < \epsilon$$

 $\Rightarrow \bar{f} \text{ is continuous at every } p \in X \Rightarrow \bar{f} \text{ is continuous on } X$ (b) Let $\bar{f} = (f_1, f_2, ..., f_k)$ and $\bar{g} = (g_1, g_2, ..., g_k)$. Now, $\bar{f} + \bar{g} = (f_1 + g_1, f_2 + g_2, ..., f_k + g_k); \ \bar{f} \cdot \bar{g} = (f_1 \cdot g_1, f_2 \cdot g_2, ..., f_k \cdot g_k).$ Given \bar{f} and \bar{g} are continuous. by (a), each f_i, g_i are continuous $(i \leq i \leq k)$ (by Theorem 3.11) $\Rightarrow f_i + g_i, f_i \cdot g_i$ are continuous. (by (a))

Theorem 3.13 Let $\bar{x} = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$ define $\phi_i : \mathbb{R}^k \to \mathbb{R}$ by $\phi_i(\bar{x}) = x_i$, (i = 1, 2, ..., k). ϕ_i is called the coordinate function, then ϕ_i is continuous. **Proof:** Let $\bar{x}, \bar{y} \in \mathbb{R}^k$. Given $\epsilon > 0$ choose $S = \epsilon$ such that

$$\begin{aligned} |\bar{x} - \bar{y}| < S \\ \Rightarrow |\phi_i(\bar{x}) - \phi_i(\bar{y})| &= |x_i - y_i| \\ &< \left(\sum_{i=1}^k |x_i - y_i|^2\right)^{1/2} \\ &= |\bar{x} - \bar{y}| \\ &< \epsilon \end{aligned}$$

 $\Rightarrow \phi_i$ is continuous on \mathbb{R}^k

Theorem 3.14 Every polynomial in \mathbb{R}^k is continuous.

Proof: By the above theorem $\phi_i : \mathbb{R}^k \to \mathbb{R}$ is continuous for every *i*. Now, $\phi_i^2(\bar{x}) = \phi_i(\bar{x}) \cdot \phi_i(\bar{x}) = x_i \cdot x_i = x_i^2 \quad \forall i$. In general $\phi_i^{n_i}(\bar{x}) = x_i^{n_i} \quad \forall i$. By Theorem 3.11, $\phi_i^{n_i}$ is continuous. Now,

$$\begin{aligned} (\phi_1^{n_1} \cdot \phi_2^{n_2} \cdots \phi_k^{n_k}) \bar{x} \\ &= \phi_1^{n_1}(\bar{x}) \cdot \phi_2^{n_2}(\bar{x}) \cdots \phi_k^{n_k}(\bar{x}) \\ &= x_1^{n_1} \cdot x_2^{n_2} \cdots x_k^{n_k} \end{aligned}$$

Now $\phi_1^{n_1} \cdot \phi_2^{n_2} \cdots \phi_k^{n_k}$ is a monomial function, where $n_1, n_2, ..., n_k$ are positive integers. Every monomial function is continuous $C_{n_1, n_2, ..., n_k}$ is a complex constant $\Rightarrow C_{n_1, n_2, ..., n_k} \cdot x_1^{n_1} \cdot x_2^{n_2} \cdots x_k^{n_k}$ is continuous on \mathbb{R}^k . $\Rightarrow \sum C_{n_1, n_2, ..., n_k} \cdot x_1^{n_1} \cdot x_2^{n_2} \cdots x_k^{n_k}$ is continuous on \mathbb{R}^k . \Rightarrow Every polynomial is continuous on \mathbb{R}^k .

Continuity and Compact: A mapping \overline{f} on a set E into X is said to be bounded, if there is a real number m such that $|\overline{f}(x)| < m \ \forall x \in X$.

Theorem 3.15 Suppose f is continuous function on a compact metric space X into a metric space Y. Then f(X) is compact. (i.e., continuous image of a compact metric space is compact)

Proof: Given that X is compact. To Prove: f(X) is compact. Let $\{V_{\alpha}\}$ be an open cover for $f(X) \Rightarrow$ each V_{α} is open in Y. Now, Given f is continuous $\Rightarrow f^{-1}(V_{\alpha})$ is open in X for each $\alpha \Rightarrow \{f^{-1}(V_{\alpha})\}$ is open cover for X. Since X is compact, there exists finitely may indices $\alpha_1, \alpha_2, ..., \alpha_n$ such that

$$X \subset f^{-1}(V_{\alpha_1}) \cup f^{-1}(V_{\alpha_2}) \cup \cdots \cup f^{-1}(V_{\alpha_n})$$
$$= \bigcup_{i=1}^n f^{-1}(V_{\alpha_i})$$
$$\Rightarrow f(X) \subset \bigcup_{i=1}^n ff^{-1}(V_{\alpha_i}) \subset \bigcup_{i=1}^n V_{\alpha_i}$$

 $\Rightarrow \{V_{\alpha}\} \Rightarrow$ has a finite sub cover. $\therefore f(X)$ is compact.

 \Rightarrow

Theorem 3.16 If \overline{f} is continuous mapping of a compact metric space X into \mathbb{R}^k . Then $\overline{f}(X)$ is closed and bounded. $\therefore \overline{f}$ is bounded.

Proof: Given \overline{f} is continuous and X is compact. $\Rightarrow \overline{f}(x)$ is a compact subset of \mathbb{R}^k . $\Rightarrow \overline{f}(x)$ is closed and bounded. (by Heine Borel theorem) Now, in particular $\Rightarrow \overline{f}(x)$ is bounded $\Rightarrow \overline{f}$ is bounded.

Theorem 3.17 Suppose f is a continuous real function on a compact metric space X and $M = \sup_{p \in X} f(p)$ and let $m = \inf_{p \in X} f(p)$. Then, there exists a points $p, q \in X$ such that $f(p) = m_1$, $f(q) = m_2$ (i.e., f attains maximum M at p and minimum m at q)

Proof: We know that, If E is bounded and $y = \sup E$ and $X = \inf E$ then $x, y \in \overline{E}$. Since f is continuous and X is compact $\Rightarrow f(X)$ is closed and bounded [By the above Theorem 3.16] and since f(X) is bounded. $m, M \in \overline{f(X)} = f(X)$ ($\because f(X)$ is closed) $\Rightarrow m, M \in f(X) \Rightarrow$ there exists $p, q \in X$ such that M = f(p), m = f(q). **Theorem 3.18** Suppose f is continuous 1-1 mapping of a compact metric space X into a metric space Y. Then the inverse mapping f^{-1} defined on Y by $f^{-1}(f(X)) = X$ is a continuous mapping of Y onto X.

Proof: Suppose f is a continuous 1-1 mapping of a compact metric space X into a metric space Y and also $f^{-1}(f(X)) = X$. To Prove: f^{-1} is continuous on Y, it is enough to prove that $(f^{-1})(V)$ is open in Y for every open set V in X. Let V be a open set in $X \Rightarrow V^c$ is closed in X. Since X is compact, V^c is compact in X. Since f is continuous, $f(V^c)$ is compact in $Y \Rightarrow f(V^c)$ is closed in $Y \Rightarrow (f(V^c))^c$ is closed in $Y \Rightarrow f(V)$ is open in Y. (: f is 1-1 and onto) $\Rightarrow (f^{-1}(V))^{-1}$ is open in $Y \Rightarrow f^{-1}$ is continuous on Y.

Definition 3.19 (Uniformly Continuous) Let X and Y be any two metric space then the $f : X \to Y$ is said it to be uniformly continuous on X if for every $\epsilon > 0$ there exists a S > 0 such that $d_X(p,q) < S \Rightarrow d_Y(f(p), f(q)) < \epsilon$ $\forall p, q \in X$.

Theorem 3.20 Let f be a continuous mapping of a compact metric space X into a metric space Y then f is uniformly continuous. (i.e.) Continuous function defined on a compact metric space is uniformly continuous.

Proof: Let $\epsilon > 0$ be given let f is continuous on $X \Rightarrow f$ is continuous at every point $p \in X$. Now, f is continuous at $p \Rightarrow$ there exists a positive real $\phi(p)$ such that $d_X(p,q) < \phi(p) \Rightarrow d_Y(f(p), f(q)) < \epsilon \ \forall q \in X$ (1)

Let $J(p) = N_{\frac{\phi(p)}{2}}\{p\} \Rightarrow J(p)$ is a closed in $X \Rightarrow J(p)$ is a open in X. $\therefore \{J(p)|p \in X\}$ is an open cover for X. Since X is compact, there exists finitely may $p \in S$. $p_1, p_2, ..., p_n$ such that $X \subset \bigcup_{i=1}^n J(p_i)$. Let $S = min\{(\frac{\phi(p)}{2}, ..., \frac{\phi(p)}{2})\}$. Clearly, S > 0. Let p, q be points in X such that $d_X(p,q) < S$. Now,

$$p \in X \subset \bigcup_{i=1}^{n} J(p_i)$$

$$\Rightarrow p \in J(p_m) \text{ for some } m, 1 \leq m \leq n$$

$$\Rightarrow d_X(p, p_m) < \frac{\phi(p_m)}{2} < \phi(p_m)$$

$$\Rightarrow d_Y(f(p), f(p_m)) < \epsilon/2....(2) \ (by(1))$$
Now $d_X(q, p_m) < d_X(q, p) + d(p, p_m)$

$$< S + \frac{\phi(p_m)}{2}$$

$$< \frac{\phi(p_m)}{2} + \frac{\phi(p_m)}{2}$$

$$= \phi(m)$$
(*i.e.*) $d_X(q, p_m) < \phi(p_m)$

$$\Rightarrow d_Y(f(q), f(p_m)) < \epsilon/2 \ by(1)....(3)$$

$$\Rightarrow d_Y(f(p), f(q)) < d_Y(f(q), f(p_m)) + d_Y(f(p_m)f(q))$$
$$= \epsilon/2 + \epsilon/2 \text{ (by (2) and (3))}$$
$$\therefore d_X(p,q) < S \Rightarrow d_Y(f(p), f(q)) < \epsilon$$

 $\Rightarrow f$ is uniformly continuous on X.

Theorem 3.21 Let E be a non-compact set in \mathbb{R}^1 . Then

(a) there exists a continuous function on E which is not bounded,

(b) there exists continuous and bounded function on which has no maximum if in addition E is bounded,

(c) there exists a continuous function on E which is not uniformly continuous.

Proof: Case(i): Suppose *E* is bounded.

(a) To Prove: f is continuous but not bounded. Since E is bounded, there exists a limit point of x_0 of E such that $x_0 \notin E$. [:: E is not closed]. Define a map $f : E \to \mathbb{R}^1$ by $f(x) = \frac{1}{x-x_0}, x \in E$. :: f is continuous on E. To Prove: f is unbounded on E. Since x_0 is a limit point of E. $N_r(x_0) \cap E \neq \emptyset$ $\forall r > 0 \Rightarrow$ there exists x_1 such that $x_1 \in N_r(x_0) \cap E \Rightarrow x_1 \in N_r(x_0)$ and $x_1 \in E$

$$\Rightarrow |x_1 - x_0| < r \text{ and } x_1 \in E$$
$$\Rightarrow \frac{1}{|x_1 - x_0|} > \frac{1}{r} \text{ and } x_1 \in E$$
$$\Rightarrow |f(x_1)| > \frac{1}{r} \text{ and } x_1 \in E \ \forall r > 0$$

 $\forall r > 0$ there exists $x \in E$ such that $|f(x)| > \frac{1}{r} \Rightarrow f$ is unbounded on E. (b) Define $g: E \to R$ by $g(x) = \frac{1}{1+(x-x_0)^2}, x \in E$. Clearly, g is continuous. Now, $0 < g(x) < 1 \Rightarrow g(x)$ is a bounded function. Clearly, $\sup_{x \in E} g(x) = 1$. But $g(x) < 1 \quad \forall x \in E$. $\therefore g$ has no maximum on E.

(c) Let $f: E \to R$ be defined by $f(x) = \frac{1}{x-x_0}$, $x \in E$, where x_0 is a limit point of E. Clearly, f is continuous on E. Let $\epsilon > 0$ be given. Let S > 0 be arbitrary choose a point $x \in E$ such that $|x - x_0| < S$ and taking t very close to x_0 so as to satisfy |t - x| < S. Then,

$$|f(t) - f(x)| = \left| \frac{1}{t - x_0} - \frac{1}{x - x_0} \right|$$
$$= \left| \frac{x - x_0 - t + x_0}{(t - x_0)(x - x_0)} \right|$$
$$= \frac{|x - t|}{|t - x_0||x - x_0|}$$
$$> \frac{1}{t - x_0} > \epsilon$$

(If we choose $x \in (x_0 - S, x_0), t \in (x_0, x_0 + S)$ and |x - t| < S or $t \in (x_0 - S, x_0), x \in (x_0, x_0 + S)$ and $|x - t| < S \Rightarrow |t - x| > |x - x_0|$) So we

have taken t very close to x_0 and we made the difference $|f(t) - f(x)| > \epsilon$ although |t - x| < S. Since this is true for every $S > 0 \Rightarrow f$ is not uniformly continuous.

Case(ii): Suppose *E* is not bounded.

(a) Define f: E → R by f(x) = x. Clearly, f is continuous on E and f is not bounded on E. ∴ there exists function on E which is not bounded.
(b) Define g: E → R by g(x) = x²/(1+x²) ⇒ g is continuous. Now, as x² <

(b) Define $g: E \to R$ by $g(x) = \frac{x}{1+x^2} \Rightarrow g$ is continuous. Now, as $x^2 < 1 + x^2 \Rightarrow g(x) = \frac{x^2}{1+x^2} < 1$. $\therefore 0 < g(x) < 1 \quad \forall x \in E$. $\therefore g$ is a bounded. $\therefore g$ is a continuous and bounded function. $\sup_{x \in E} g(x) = 1$. But g has no maximum on E.

(c) If the boundedness is omitted then the result fails. Let E be the set of all integers. Then every function defined on E is uniformly continuous on $E \Rightarrow$ for every $\epsilon > 0$ choose S < 1 such that $|X - Y| < S \Rightarrow |f(x) - f(y)| = 0 < \epsilon$

Continuity and Connectedness:

Theorem 3.22 If f is a continuous mapping on a metric space X into a metric space Y and E is a connected subset of X. Then f(E) is connected. i.e., continuous image of a connected subset of a metric space is connected. **Proof:** Given E is connected subset of X. To Prove: f(E) is a connected subset of Y. Suppose f(E) is not connected. $\Rightarrow f(E) = A \cup B$ where A and B are non-empty separated sets. Put $G = E \cap f^{-1}(A)$ and $H = E \cap f^{-1}(B)$

$$G \cup H = (E \cap f^{-1}(A)) \cup (E \cap f^{-1}(B))$$
$$= E \cap (f^{-1}(A) \cup f^{-1}(B))$$
$$= E \cap (f^{-1}(A \cup B))$$
$$= E \cap E$$
$$G \cup H = E$$

Clearly $G \neq \emptyset$ $H \neq \emptyset$ ($:: A \neq \emptyset, B \neq \emptyset$). Claim: G and H are separated

sets. i.e., To Prove $\bar{G} \cap H = \emptyset, G \cap \bar{H} = \emptyset$. Now

$$\begin{split} G &= E \cap f^{-1}(A) \\ \Rightarrow G \subset f^{-1}(A) \subset f^{-1}(\bar{A}) \\ \Rightarrow \bar{G} \subset \bar{f}^{-1}(\bar{A}) = f^{-1}(\bar{A}) \ [\because \bar{A} \text{ is closed and} \\ f \text{ is continuous } \Rightarrow f^{-1}(\bar{A})] \\ \Rightarrow f(\bar{G}) \subset ff^{-1}(\bar{A}) \subset \bar{A} \\ \Rightarrow f(\bar{G}) \subset \bar{A} \\ H &= E \cap f^{-1}(B) \\ \Rightarrow H \subset f^{-1}(B) \Rightarrow f(H) \subset ff^{-1}(B) = B \\ \Rightarrow f(H) \subset B \\ \Rightarrow f(\bar{G}) \cap f(H) \subset \bar{A} \cap B = \emptyset (\because A \text{ and } B \text{ are separated sets}) \\ \Rightarrow f(\bar{G}) \cap f(H) = \emptyset \\ \Rightarrow f(\bar{G} \cap H) = \emptyset \\ \Rightarrow \bar{G} \cap H = \emptyset \\ \text{similarly, } G \cap \bar{H} = \emptyset \end{split}$$

 \therefore G and H are separated sets. \Rightarrow E can be expressed as a union of two non-empty separated sets. \Rightarrow E is not connected. \Rightarrow \Leftarrow to E is connected. \therefore f(E) is connected.

Theorem 3.23 Intermediate Value Theorem: Let f be a continuous real valued function on [a, b]. If f(a) < f(b) and c is the number such that f(a) < c < f(b) then there exists a point $x \in (a, b)$ such that f(x) = c. **Proof:** Every interval in \mathbb{R} is connected and f is continuous. By the previous

theorem, f[a, b] is connected in \mathbb{R} . $\Rightarrow f[a, b]$ is interval in \mathbb{R} . Let $f(a), f(b) \in f[a, b] \Rightarrow [f(a), f(b)] \subset f[a, b]$. Now, $f(a) < c < f(b) \Rightarrow c \in f[a, b] \Rightarrow c = f(x)$ for some $x \in [a, b]$.

Remark 3.24 Converse not true.

Proof: If any two points x_1 and x_2 and for any member c between $f(x_1)$ and $f(x_2)$ there is a point x in $[x_1, x_2]$ such that f(x) = c then f may be discontinuous. For example:

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Choose $x_1 \in (-\frac{\pi}{2}, 0), x_2 \in (0, \frac{\pi}{2})$. Clearly $x_1 < x_2$; $f(x_1)$ =negative $f(x_2)$ =positive. $\therefore f(0) = 0$. f is continuous all the points except at 0.

Differentiation:

Definition 3.25 Let f be real value function defined on [a, b], for any $x \in [a, b]$ form the quotient $\phi(t) = \frac{f(t) - f(x)}{t - x}$, $a < t < b, t \neq x$, and defined

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

provided the limit exists.

Remark 3.26 1. If f' is defined at a point, we say that f is differentiable at x.

2. If f' is defined at every point of a set $E \subset [a,b]$, we say that f is differentiable on E.

Theorem 3.27 Let f be defined on [a, b]. If f is differentiable at a point x in [a, b], then f is continuous at x. **Proof:** Given f is differentiable at x. (i.e.)

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$
 exists.

To Prove: f is continuous at x (i.e.) To Prove

$$\lim_{t \to x} f(t) = f(x)$$

Now

$$f(t) - f(x) = \frac{f(t) - f(x)}{t - x}(t - x)$$
$$\lim_{t \to x} (f(t) - f(x)) = \lim_{t \to x} \left[\frac{f(t) - f(x)}{t - x}(t - x) \right]$$
$$= \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \cdot \lim_{t \to x} (t - x)$$
$$= f'(x) \cdot 0$$
$$= 0$$
$$\lim_{t \to x} (f(t) - f(x)) = 0$$
$$(\text{or)} \quad \lim_{t \to x} f(t) = f(x)$$

 $\therefore f$ is continuous at x.

Remark 3.28 Converse of above theorem is not true. For example f(x) = |x| is continuous but not differentiable at origin.

Theorem 3.29 Suppose f and g are defined on [a, b] and are differentiable at at point x in [a, b] then f + g, fg, $\frac{f}{g}$ are differentiable at x. (a) (f + g)'(x) = f'(x) + g'(x)

(b)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

(c) $(\frac{f}{g})'(x) = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}, g(x) \neq 0.$
Proof: Given f and g are differentiable at x.

$$(i.e.)f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$
 and $g'(x) = \lim_{t \to x} \frac{g(t) - g(x)}{t - x}$ exists.

(a)

$$\phi(t) = \frac{(f+g)(t) - (f+g)(x)}{t-x}$$
$$= \frac{f(t) + g(t) - (f(x) + g(x))}{t-x}$$
$$\phi(t) = \frac{f(t) - f(x)}{t-x} + \frac{g(t) - g(x)}{t-x}$$

Taking limits as $t \to x$

$$\lim_{t \to x} \phi(t) = \lim_{t \to x} \left\{ \frac{f(t) - f(x)}{t - x} + \frac{g(t) - g(x)}{t - x} \right\}$$
$$= \lim_{t \to x} \frac{f(t) - f(x)}{t - x} + \lim_{t \to x} \frac{g(t) - g(x)}{t - x}$$
$$(i.e.)(f + g)'(x) = f'(x) + g'(x)$$

(i.e.) (f+g) is differentiable at x. (b) (fg)'(x) = f'(x)g(x) + f(x)g'(x). Let h = fg. Now,

$$\begin{aligned} (h(t) - h(x)) &= (fg)(t) - (fg)(x) \\ &= f(t)g(t) - f(x)g(x) \\ &= f(t)g(t) - f(t)g(x) + f(t)g(x) - f(x)g(x) \\ &= f(t)(g(t) - g(x)) + g(x)(f(t) - f(x)) \\ \frac{h(t) - h(x)}{t - x} &= f(t)\frac{(g(t) - g(x))}{t - x} + g(x)\frac{(f(t) - f(x))}{t - x} \\ \lim_{t \to x} \frac{h(t) - h(x)}{t - x} &= \lim_{t \to x} \left\{ f(t)\frac{g(t) - g(x)}{t - x} + g(x)\frac{f(t) - f(x)}{t - x} \right\} \\ &= \lim_{t \to x} f(t)\lim_{t \to x} \frac{g(t) - g(x)}{t - x} + \lim_{t \to x} g(x)\lim_{t \to x} \frac{f(t) - f(x)}{t - x} \\ h'(x) &= f(x)g'(x) + g(x)f'(x) \\ (fg)'(x) &= f(x)g'(x) + g(x)f'(x) \end{aligned}$$

fg is differentiable at x.

$$\begin{aligned} \left(\mathbf{c}\right) \left(\frac{f}{g}\right)'(x) &= \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}. \text{ Let } h = \frac{f}{g}. \\ \left(h(t) - h(x)\right) &= \frac{f}{g}(t) - \frac{f}{g}(x) \\ &= \frac{f(t)}{g(t)} - \frac{f(x)}{g(x)} \\ &= \frac{f(t)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(t)}{g(t)g(x)} \\ &= \frac{g(x)(f(t) - f(x)) - f(x)(g(t) - g(x))}{g(t)g(x)} \\ \frac{h(t) - h(x)}{t - x} &= \frac{g(x)(f(t) - f(x)) - f(x)(g(t) - g(x))}{g(t)g(x)(t - x)} \\ \lim_{t \to x} \frac{h(t) - h(x)}{t - x} &= \lim_{t \to x} \frac{g(x)}{g(t)g(x)} \left(\frac{f(t) - f(x)}{t - x}\right) - \lim_{t \to x} \frac{f(x)}{g(t)g(x)} \left(\frac{g(t) - g(x)}{t - x}\right) \\ &= \frac{g(x)}{g^2(x)} \lim_{t \to x} \frac{f(t) - f(x)}{t - x} - \frac{f(x)}{g^2(x)} \lim_{t \to x} \frac{g(t) - g(x)}{t - x} \\ h'(x) &= \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)} \\ \left(\frac{f}{g}\right)'(x) &= \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)} \end{aligned}$$

Since f'(x), g'(x) exists and $g(x) \neq 0, \left(\frac{f}{g}\right)'(x)$ exists.

Example 3.30 (1) The derivative of any constant is zero. (2) $f(x) = x \Rightarrow f'(x) = 1$ (3) $f(x) = n \Rightarrow f'(x) = nx^{n-1}$

Theorem 3.31 Chain Rule: Suppose f is continuous on [a, b], f'(x) exists at some point x in [a, b], g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If $h(t) = g(f(t)), a \le$ $t \le b$ then h is differentiable at x, and h'(x) = g'(f(x))f'(x). **Proof:** Given

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \text{ exists, } t \in [a, b].$$

Let h(t) = g(f(t)). To Prove: h'(x) = g'(f(x))f'(x). Since f is differentiable at $x \in [a, b]$

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \text{ exists, } t \in [a, b] \text{ exists.}$$

(*i.e.*) $f'(x) + u(t) = \frac{f(t) - f(x)}{t - x}, t \in [a, b] \text{ where } \lim_{t \to x} u(t) = 0$
 $\Rightarrow (f'(x) + u(t))(t - x) = f(t) - f(x).....(1)$

62

Let y = f(x). Now g is differentiable at y(= f(x))

$$g'(y) = \lim_{s \to y} \frac{g(s) - g(y)}{s - y}, s \in I$$

(*i.e.*) $g'(y) + v(s) = \frac{g(s) - g(y)}{s - y}, s \in I$ where $\lim_{s \to y} v(s) = 0$
 $(g'(y) + v(s))(s - y) = g(s) - g(y).....(2)$

Let s = f(t). Now,

$$\begin{split} h(t) - h(x) &= g(f(t)) - g(f(x)) \\ &= (g'(f(x)) + v(s))(s - y) \ (by(2)) \\ h(t) - h(x) &= g'(f(x) + v(s))(f(t) - f(x)) \\ &= g'(f(x) + v(s))(f'(x) + u(t))(t - x) \ (by(1)) \\ \frac{h(t) - h(x)}{t - x} &= g'(f(x) + v(s))(f'(x) + u(t)) \\ \lim_{t \to x} \frac{h(t) - h(x)}{t - x} &= \lim_{t \to x} \{g'(f(x) + v(s))(f'(x) + u(t))\} \\ h'(x) &= \lim_{t \to x} g'(f(x) + v(s)) \lim_{t \to x} (f'(x) + u(t)) \\ &= \lim_{s \to y} (g'(f(x)) + v(s)) f'(x) \\ &= g'(f(x))f'(x) \\ \therefore h'(x) &= g'(f(x))f'(x) \end{split}$$

Example 3.32 Let

$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Find $f'(x)(x \neq 0)$, and show that f'(0) does not exist. Solution:

$$f(x) = x \sin \frac{1}{x}$$

$$f'(x) = x \cos\left(\frac{1}{x}\right) \left(\frac{-1}{x^2}\right) + \sin\left(\frac{1}{x}\right)$$

$$= -\frac{1}{x} \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right)$$

$$= \sin\left(\frac{1}{x}\right) - \left(\frac{1}{x}\right) \cos\left(\frac{1}{x}\right), x \neq 0.$$

since $x \neq 0 f'(x)$ exists. To Prove: f'(0) does not exists.

$$f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0}$$
$$= \lim_{t \to 0} \frac{t \sin \frac{1}{t} - 0}{t - 0}$$
$$= \lim_{t \to 0} \sin \frac{1}{t} \text{ which does not exists}$$

 $\therefore f'(0)$ does not exists.

Example 3.33 Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Find $f'(x)(x \neq 0)$, show that f'(0) = 0Solution: Let

$$f(x) = x^{2} \sin \frac{1}{x}$$

$$f'(x) = x^{2} \left(\cos \left(\frac{1}{x}\right)\right) \left(\frac{-1}{x^{2}}\right) + 2x \cdot \sin \frac{1}{x}$$

$$= 2x \cdot \sin \frac{1}{x} - \cos \frac{1}{x}, x \neq 0$$

$$f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0}$$

$$= \lim_{t \to 0} \frac{x^{2} \sin \frac{1}{t} - 0}{t - 0}$$

$$= \lim_{t \to 0} t \sin \frac{1}{t}$$

$$= 0 \quad (\because \left|t \sin \frac{1}{t}\right| \le 1)$$

$$\therefore f'(0) = 0$$

Mean Value Theorems:

Definition 3.34 Local Maximum, Local Minimum: Let f be a real function defined on a metrics space X. We say that f has local maximum at a point p in X if there exists $\delta > 0$ such that $f(q) \leq f(p) \ \forall q \in X$ with $d(p,q) < \delta$. f has a local minimum at p in X, if $f(p) \leq f(q) \ \forall q \in X$ such that $d(p,q) < \delta$.

Theorem 3.35 Let f be defined on [a,b]; if f has a local maximum at a point $x \in (a,b)$ and if f' exists, then f'(x)=0. The analogous statement for local minimum is also true.

Proof: Case(i) Assume that f has local maximum at x. To Prove: f'(x) =

0. Since f has local maximum at x, there exists $\delta > 0$ such that $(q, x) < \delta \Rightarrow f(q) \le f(x)$

If
$$x - \delta < t < x$$
 then $\frac{f(t) - f(x)}{t - x} \ge 0$
 $\Rightarrow \lim_{t \to x} \frac{h(t) - h(x)}{t - x} \ge 0$
(*i.e.*) $f'(x) \ge 0$ (1)
If $t^x < x^t < x + \delta$ then $\frac{f(t) - f(x)}{t - x} \le 0$
 $\Rightarrow \lim_{t \to x} \frac{h(t) - h(x)}{t - x} \le 0$
 $\Rightarrow f'(x) \le 0$ (2)

Since f'(x) exists, $(1),(2) \Rightarrow f'(x) = 0$.

Case(ii) Assume that f has a local minimum at x. We show that f'(x)=0. Then there exists $\delta > 0$ such that $d(q, x) < \delta \Rightarrow f(q) \ge f(x)$

If
$$x - \delta < t < x$$
 then $\frac{f(t) - f(x)}{t - x} \le 0$
 $\Rightarrow \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \le 0$
(*i.e.*) $f'(x) \le 0$ (3)
If $x < t < x + \delta$ then $\frac{f(t) - f(x)}{t - x} \ge 0$
 $\Rightarrow \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \ge 0$
 $\Rightarrow f'(x) \ge 0$ (4)

Since f'(x) exists, and from (3) and (4) we get f'(x)=0.

Theorem 3.36 Generalised Mean Value Theorem: If f and g are continuous real functions on [a,b], which are differentiable in (a,b), then there is a point $x \in (a,b)$ at which [f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x). **proof:** Let h(t) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t), $t \in [a,b]$. Since f and g are differentiable in (a,b), h(t) is also differentiable in (a,b). Now,

$$\begin{aligned} h(a) &= [f(b) - f(a)]g(a) - [g(b) - g(a)]f(a) \\ &= f(b)g(a) - f(a)g(a) - g(b)f(a) + g(a)f(a) \\ &= f(b)g(a) - g(b)f(a) \\ h(b) &= [f(b) - f(a)]g(b) - [g(b) - g(a)]f(b) \\ &= f(b)g(b) - f(a)g(b) - g(b)f(b) + g(a)f(b) \\ &= g(a)f(b) - f(a)g(b) \end{aligned}$$

Claim: h'(x) = 0 for some $x \in (a, b)$. If h(t) is a constant then $h'(x) = 0 \quad \forall x \in (a, b)$. If h(t) < h(a), a < t < b, then by Intermediate value theorem, there exists x in (a, b) at which h is minimum. $\therefore h'(x) = 0$ (by Theorem 3.35). If h(t) > h(a) then h attains its maximum at some point $x \in (a, b)$. $\therefore h'(x) = 0$ (by Theorem 3.35) (i.e.)

$$(f(b) - f(a))g'(x) - (g(b) - g(a))f'(x) = 0$$

(f(b) - f(a))g'(x) = (g(b) - g(a))f'(x)

Theorem 3.37 Mean Value Theorem: If f is a real continuous function on [a, b] which is differentiable at (a, b) then there is a point $x \in (a, b)$ at which f(b) - f(a) = (b - a)f'(x).

Proof: Put g(x) = x in theorem 3.36. $\therefore g'(x) = 1 \Rightarrow (f(b) - f(a)) = (b - a)f'(x)$.

Theorem 3.38 Suppose f is differentiable in (a, b).

(a) If $f'(x) \ge 0 \ \forall x \in (a, b)$, then f is monotonically increasing.

(b) If $f'(x) = 0 \ \forall x \in (a, b)$, then f is a constant.

(c) If $f'(x) \leq 0 \ \forall x \in (a, b)$, then f is monotonically decreasing.

Proof: (a)By theorem 3.37, If $x_1 < x_2$, then there exists $x_1 < x < x_2$ such that $f(x_2) - f(x_1) = (x_2 - x_1)f'(x)$ (1)

If $f'(x) \ge 0$ then $(1) \Rightarrow f(x_2) - f(x_1) \ge 0$ $(\because (x_2 - x_1)f'(x) \ge 0) \Rightarrow f(x_1) \le f(x_2)$ (i.e.) f is an increasing function

(b) If f'(x)=0 then $(1) \Rightarrow f(x_2) - f(x_1) = 0 \Rightarrow f(x_2) = f(x_1)$. $\therefore f$ is constant.

(c) If $f'(x) \leq 0$ then $(1) \Rightarrow f(x_2) - f(x_1) \leq 0 \Rightarrow f(x_1) \geq f(x_2)$. $\therefore f$ is an decreasing function.

The Continuity Of Derivatives

Theorem 3.39 Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$, then there is a point $x \in (a, b)$ such that $f'(x) = \lambda$. A similar result holds if $f'(a) > \lambda > f'(b)$.

Proof: Let $g(t) = f(t) - \lambda t, t \in [a, b]$ then, $g'(t) = f'(t) - \lambda; g'(a) = f'(a) - \lambda < 0$. \therefore there exists $a < t_1 < b$ such that $g(t_1) < g(a)$. Also, $g'(b) = f'(b) - \lambda > 0$. \therefore there exists $a < t_2 < b$ such that $g(t_2) < g(b)$. $\therefore g$ attains minimum at $x \in (a, b)$. $\therefore g'(x) = 0$ (by Theorem 3.35) (i.e.) $f'(x) - \lambda = 0 \Rightarrow f'(x) = \lambda$.

Corollary 3.40 If f is differentiable on [a, b], then f' is cannot have any simple discontinuity on [a, b]. But f' may have discontinuity of second kind. **Proof:** f' takes every value between f(a) and f(b). Let a < x < b. If f' is not continuous at x, then

1. f'(x+), f'(x-) exists,

66

- 2. $f'(x+) \neq f'(x-),$
- 3. $f'(x-) = f'(x+) \neq f'(x) \Rightarrow \Leftarrow$

 \therefore f' cannot have any simple discontinuity. In Example 3.33 f' has a discontinuity of second kind at $x \in [a, b]$.

Theorem 3.41 *L'Hospital's Rule:* Suppose f and g are differentiable in (a,b) and $g'(x) \neq 0 \ \forall x \in (a,b)$ where $-\infty \leq a < b \leq \infty$. Suppose $\frac{f'(x)}{g'(x)} \rightarrow A$ as $x \rightarrow a$ (1).

If $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$ (2) (or) if $g(x) \to \infty$ as $x \to a$ (3), then $\frac{f(x)}{g(x)} \to A$ as $x \to a$ (4). (The analogous statement is true if $x \to b$ (or) if $g(x) \to -\infty$ in (3)).

Proof: Case(i): Let $-\infty \le A < \infty$. We choose r and q such that A < r < q. Given

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$$

Then there exists $c \in (a, b)$ such that $a < x < c \Rightarrow \frac{f'(x)}{g'(x)} < r$ (i) Now if a < x < y < c then by generalised mean value theorem, there exists $t \in (a, b)$ such that $\frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(t)}{g'(t)} < r$ (ii) Suppose $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$. Then by taking limits as $x \to a$,

Suppose $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$. Then by taking limits as $x \to a$, then (ii) we get $\frac{f(y)}{g(y)} \le r < q$ (iii) Suppose $g(x) \to \infty$ as $x \to a$, then by keeping y fixed in (ii) we can find

Suppose $g(x) \to \infty$ as $x \to a$, then by keeping y fixed in (ii) we can find $c_1 \in (a, y)$ such that g(x) > g(y) and $g(x) > 0 \ \forall x \in (a, c_1)$. Multiply (ii) by $\frac{g(x)-g(y)}{g(x)}$, we get

$$\begin{aligned} \frac{f(x) - f(y)}{g(x)} < r\left(\frac{g(x) - g(y)}{g(x)}\right) \\ \Rightarrow \frac{f(x)}{g(x)} - \frac{f(y)}{g(x)} < r\left(1 - \frac{g(y)}{g(x)}\right) \\ \Rightarrow \frac{f(x)}{g(x)} < r - r\frac{g(y)}{g(x)} + \frac{f(y)}{g(x)} \end{aligned}$$

Since $g(x) \to \infty$ as $x \to a$, there exists $c_2 \in (a, c_1)$ such that $\frac{f(x)}{g(x)} < r \ \forall x \in (a, c_2) \ (\text{or}) \ \frac{f(x)}{g(x)} < q \ \forall x \in (a, c_2)$(iv) suppose $-\infty < A \le \infty$. By choosing p < A as above, we can show that there exists $c_3 \in (a, b)$ such that $p < \frac{f(x)}{g(x)} \ \forall a < x < c_3$(v)

Thus in all cases $\frac{f(x)}{g(x)} \to A$ as $x \to a$. Hence

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Derivatives Of Higher Order

Definition 3.42 If f has a derivative f' on an interval and if f' is differentiable, we see the second derivative f'' exists. Similarly if $f^{n-1}(x)$ is differentiable we say $f^{(n)}$ exists.

Theorem 3.43 Taylor's Theorem: Suppose f is a real function on [a, b], n is a positive integer, $f^{(n-1)}$ is continuous on [a, b], $f^{(n)}(t)$ exists $\forall t \in (a, b)$. Let α, β be distinct points of [a, b] and define

$$p(t) = \sum_{n=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t-\alpha)^k,$$

then there exists a point $x \in (\alpha, \beta)$ such that $f(\beta) = p(\beta) + \frac{f^{(n)}(x)}{n!}(\beta - \alpha)^n$. **Proof:** If n=1, then $f(\beta) = f(\alpha) + f'(x)(\beta - \alpha)$; $\frac{f(\beta) - f(\alpha)}{\beta - \alpha} = f'(x)$. This is just the mean value theorem. Suppose n > 1. Define a number M such that $f(\beta) = p(\beta) + M(\beta - \alpha)^n$(1) Let $g(t) = f(t) - p(t) - M(t - \alpha)^n$(2) Now,

$$g(\alpha) = f(\alpha) - p(\alpha) - M(\alpha - \alpha)^{n}$$

$$= f(\alpha) - p(\alpha)$$

$$g(\alpha) = f(\alpha) - f(\alpha) (\because p(\alpha) = f(\alpha))$$

$$= 0$$

$$g(\beta) = f(\beta) - p(\beta) - M(\beta - \alpha)^{n}$$

$$= 0 (by (1)).....(4)$$
Also $g^{(n)}(t) = f^{(n)}(t) - 0 - Mn!....(5)$

$$g^{(k)}(\alpha) = f^{(k)}(\alpha) - p^{(k)}(\alpha)$$

$$= f^{(k)}(\alpha) - f^{(k)}(\alpha)$$

$$= 0.....(6)$$

(i.e.) $g(\alpha) = g'(\alpha) = \cdots = g^{n-1}(\alpha) = 0$. Since $g(\alpha) = 0$ and $g(\beta) = 0$, there exists $x_1 \in (\alpha, \beta)$, by mean value theorem, such that $g'(x_1)=0$. Now since $g'(\alpha) = 0$; $g'(x_1) = 0$ again by mean value theorem there exists $x_2 \in (\alpha, x_1)$ such that $g''(x_2) = 0$. Proceeding this way we get $\alpha < x_n < x_{n-1}$, such that $g^{(n)}(x_n) = 0$ (i.e.) $f^{(n)}(x_n) - Mn! = 0$ (by (5)). $\therefore M = \frac{f^n(x_n)}{n!}$, sub M in $(1) \Rightarrow f(\beta) = p(\beta) + \frac{f^{(n)}(x_n)}{n!}(\beta - \alpha)^n, \forall x \in (\alpha, x_{n-1})$

4. UNIT IV

The Riemann-Steiltjes integral and Sequences and series of functions

Definition 4.1 Let [a, b] be an interval. By a partition P of [a, b] we mean a finite set of points $x_0, x_1, ..., x_n$, where $a = x_0 \le x_1 \le ..., \le x_{i-1} \le x_i \le ..., \le x_n = b$.

Remark 4.2 1. $\Delta x_i = x_i - x_{i-1} \quad \forall i = 1, 2, ..., n.$

2. Let f be a bounded real function on [a, b] then $m_i = \inf f(x), M_i = \sup f(x) \quad \forall x_{i-1} \le x \le x_i.$

3.

$$L(P, f) = \sum_{i=1}^{n} m_i \Delta x_i$$
$$U(P, f) = \sum_{i=1}^{n} m_i \Delta x_i$$
$$L(P, f) \le \int_a^b f(x) dx \le U(P, f)$$
$$L(P, f) \le U(P, f).$$

- 4. $\int_{a}^{b} f(x)dx = \sup L(P, f)$
- 5. $\int_{a}^{\overline{b}} f(x)dx = \inf U(P, f)$ (The inf and sup are taken over all partition P of [a, b]).
- 6. If the upper and lower reimann interval over is same then f is said to be Reimann integrable over $[a, b].f \in \mathcal{R}(\mathcal{R} \text{ is the set of all Reimann integrable functions})}$
- $\tilde{7}.$

$$\int_{\underline{a}}^{b} f(x)dx = \int_{a}^{\overline{b}} f(x)dx = \int_{a}^{b} f(x)dx$$

Result 4.3 For every partition P of [a, b] and every bounded function f there exists 2 real numbers m, M such that $m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a)$.

Solution: Let $m = \inf f(x)$ and $M = \sup f(x), a \le x \le b$. Let P =

 $\{x_0, x_1, ..., x_n\}$ be the given partition of [a, b],

$$m \leq m_i \leq M_i \leq M$$

$$m\Delta x_i \leq m_i\Delta x_i \leq M_i\Delta x_i \leq M\Delta x_i \ (\Delta x_i \geq 0)$$

$$\sum_{i=1}^n m\Delta x_i \leq \sum_{i=1}^n m_i\Delta x_i \leq \sum_{i=1}^n M_i\Delta x_i \leq \sum_{i=1}^n M\Delta x_i$$

$$m(\sum_{i=1}^n \Delta x_i) \leq L(P, f) \leq U(P, f) \leq M \sum_{i=1}^n \Delta x_i \dots \dots (1)$$
Now,
$$\sum_{i=1}^n \Delta x_i = \Delta x_1 + \Delta x_2 + \dots + \Delta x_n$$

$$= (x_1 - x_0) + (x_2 - x_1) + \dots + (x_n - x_{n-1})$$

$$= x_n - x_0$$

$$= b - a \dots \dots (2)$$

sub (2) in (1) we get, $m(b-a) \le L(P, f) \le U(P, f) \le M(b-a)$.

Definition 4.4 Let α be a monotonically increasing function on [a, b]. Corresponding to each partition P of [a, b]we define $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$. Clearly, $\Delta \alpha_i \ge 0$

$$L(P, f, \alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i$$
$$U(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i$$
$$\sup L(P, f, \alpha) = \int_{\underline{a}}^{\underline{b}} f d\alpha$$
$$U(P, f, \alpha) = \int_{a}^{\overline{b}} f d\alpha$$

where infimum and suprimum are taken over all partitions. If

$$\int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\overline{b}} f d\alpha,$$

then f is Reimann Stieljes integrable with respect to,

$$\int_{a}^{b} f d\alpha = \int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\overline{b}} f d\alpha,$$

we also write $f \in \mathcal{R}(\alpha)$.

Note 4.5 By taking $\alpha(x) = x$, we see that the Reimann integral is the special case of Riemann's Stieltjes integral.
Definition 4.6 The partition P^* of [a, b] is called a refinement of P if $P \subset P^*$. Given two partition P_1 and P_2 , we say that $P = P_1 \cup P_2$ is the common refinement of P_1 and P_2 .

Theorem 4.7 If P^* is an refinement of P, then $L(P, f, \alpha) \leq L(P^*, f, \alpha)$ and $U(P^*, f, \alpha) \leq U(P, f, \alpha)$.

Proof: Let $P = \{x_0, x_1, ..., x_{i-1}, x_i, ..., x_n\}$ be a partition of [a, b] and let $P^* = \{x_0, x_1, x_2, ..., x_{i-1}, x^*, x_i, ..., x_n\}$ be an refinement of P. Let

$$m_{i} = \inf f(x), \ x_{i-1} \le x \le x_{i}$$
$$w_{1} = \inf f(x), \ x_{i-1} \le x \le x^{*}$$
$$w_{2} = \inf f(x), \ x^{*} \le x \le x_{i}$$

 $\therefore w_1 \ge m_i \text{ and } w_2 \ge m_i. \text{ Now,}$

$$L(P^*, f, \alpha) = m_1 \Delta \alpha_1 + m_2 \Delta \alpha_2 + \dots + m_{i-1} \Delta \alpha_{i-1} + w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) + m_{i+1} \Delta \alpha_{i+1} \dots + m_n \Delta \alpha_n \dots \dots (1) L(P, f, \alpha) = m_1 \Delta \alpha_1 + m_2 \Delta \alpha_2 + \dots + m_{i-1} \Delta \alpha_{i-1} + m_i \Delta \alpha_i + m_{i+1}(\Delta \alpha_{i+1}) + \dots + m_n \Delta \alpha_n \dots \dots (2)$$

(1)- $(2) \Rightarrow$

$$\begin{split} L(P^*, f, \alpha) - L(P, f, \alpha) &= w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) - m_i \Delta \alpha_i \\ &= w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) \\ &- m_i(\alpha(x_i) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) \\ &- m_i(\alpha(x_i) - \alpha(x^*)) - m_i(\alpha(x^*) - \alpha(x_{i-1})) \\ &= (w_1 - m_i)(\alpha(x^*) - \alpha(x_{i-1})) \\ &+ (w_2 - m_i)(\alpha(x_i) - \alpha(x^*)) \\ &\geq 0(\because w_1 \text{ and } w_2 \geq m_i) \\ L(P^*, f, \alpha) - L(P, f, \alpha) \geq 0 \\ &\Rightarrow L(P, f, \alpha) \leq L(P^*, f, \alpha) \\ &\therefore L(P, f, \alpha) \leq L(P^*, f, \alpha) \end{split}$$

Let $P^* = \{x_0, x_1, ..., x_{i-1}, x^*, x_i, ..., x_n\}$ be refinement of *P*. Let

$$M_i = \sup f(x), x_{i-1} \le x \le x_i$$
$$w_1 = \sup f(x), x_{i-1} \le x \le x^*$$
$$w_2 = \sup f(x), x^* \le x \le x_i$$
$$\therefore w_1 \ge M_i \text{ and } w_2 \ge M_i$$

Now

$$U(P^*, f, \alpha) = M_1 \Delta \alpha_1 + M_2 \Delta \alpha_2 + \dots + M_{i-1} \Delta \alpha_{i-1} + w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) + M_{i+1} \Delta \alpha_{i+1} + \dots + M_n \Delta \alpha_n \dots \dots (1) U(P, f, \alpha) = M_1 \Delta \alpha_1 + M_2 \Delta \alpha_2 + \dots + M_{i-1} \Delta \alpha_{i-1} + M_i \Delta \alpha_i + M_{i+1}(\Delta \alpha_{i+1}) + \dots + M_n \Delta \alpha_n \dots \dots (2)$$

(1)- $(2) \Rightarrow$

$$\begin{split} U(P^*, f, \alpha) - U(P, f, \alpha) &= w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) \\ &- \alpha(x^*)) - M_i \Delta \alpha_i \\ &= w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) \\ &- M_i(\alpha(x_i) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) \\ &- M_i(\alpha(x_i) - \alpha(x^*)) - M_i(\alpha(x^*) - \alpha(x_{i-1})) \\ &= (w_1 - M_i)(\alpha(x^*) - \alpha(x_{i-1})) \\ &+ (w_2 - M_i)(\alpha(x_i - \alpha(x^*))) \\ &\leq 0(\because w_1 \text{ and } w_2 \leq M) \\ (i.e.) \ U(P^*, f, \alpha) - U(P, f, \alpha) \leq 0 \\ &\Rightarrow U(P^*, f, \alpha) \leq U(P, f, \alpha) \\ &\therefore U(P^*, f, \alpha) \leq U(P, f, \alpha) \end{split}$$

If P^* contains k-points more than P, we repeat this reasoning k-times and get the result.

Theorem 4.8

$$\int_{\underline{a}}^{\underline{b}} f d\alpha \le \int_{a}^{\overline{b}} f d\alpha.$$

Proof: Let P_1 and P_2 be two partition of [a, b] and let $P^* = P_1 U P_2$. (i.e.) P^* is a common refinement of P_1 and P_2 . $L(P_1, f, \alpha) \leq L(P^*, f, \alpha) \leq U(P^*, f, \alpha) \leq U(P_2, f, \alpha) \Rightarrow L(P_1, f, \alpha) \leq U(P_2, f, \alpha)$. Keeping P_1 fixed and taking infimum over all partition P_2 , we get

$$L(P, f, \alpha) \leq \int_{a}^{\bar{b}} f d\alpha.$$

Now, by taking suprimum over all partition P_1 we get

$$\int_{\underline{a}}^{b} f d\alpha \le \int_{a}^{b} f d\alpha.$$

Theorem 4.9 Criterion for Riemann Integrability: Let $f \in \mathcal{R}(\alpha)$ iff $\forall \in > 0$, there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \in$.

Proof: Let $\in > 0$, there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \in$ Claim: $f \in \mathcal{R}(\alpha)$. We know that

$$\begin{split} U(P,f,\alpha) &\geq \int_{a}^{\bar{b}} f d\alpha....(1) \\ L(P,f,\alpha) &\leq \int_{\underline{a}}^{b} f d\alpha....(2) \\ (2) \times -1 \Rightarrow -L(P,f,\alpha) &\geq -\int_{\underline{a}}^{b} f d\alpha....(3) \\ (1) + (3) \ U(P,f,\alpha) - L(P,f,\alpha) &\geq \int_{a}^{\bar{b}} f d\alpha - \int_{\underline{a}}^{b} f d\alpha \\ (or) \ \int_{a}^{\bar{b}} f d\alpha - \int_{\underline{a}}^{b} f d\alpha &\leq U(P,f,\alpha) - L(P,f,\alpha) \\ &\leq \epsilon \end{split}$$

Since ϵ is arbitrary,

$$\int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\overline{b}} f d\alpha. (i.e.) \ f \in \mathcal{R}(\alpha).$$

Conversely: Assume $f \in \mathcal{R}(\alpha)$. To Prove: let $\epsilon > 0$, there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$ let $\epsilon > 0$ be given

Then there exists two partition P_1 and P_2 such that $U(P_1, f, \alpha) < \int_a^b f d\alpha + \frac{\epsilon}{2}....(4)$ and $\int_a^b f d\alpha - \frac{\epsilon}{2} < L(P_2, f, \alpha).....(5)$ Let $P = P_1 U P_2$ (i.e.) P is the common refinement of P_1 and P_2 Now

$$U(P, f, \alpha) \leq U(P_1, f, \alpha)$$

$$\leq \int_a^b f d\alpha + \frac{\epsilon}{2} \text{ (by (4))}$$

$$< L(P_2, f, \alpha) + \frac{\epsilon}{2} + \frac{\epsilon}{2} \text{ (by (5))}$$

$$= L(P_2, f, \alpha) + \epsilon$$

$$\leq L(P, f, \alpha) + \epsilon$$

$$\therefore U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$$

Theorem 4.10 Let P be a partition \in : $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon...(1)$ (a) if (1) holds for some P and ϵ then (1) holds for every refinement of P. (b) if (1) holds for $P = \{x_0, x_1, ..., x_n\}$ and s_i, t_i are arbitrary points in $[x_{i-1}, x_i]$ then

$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i < \epsilon$$

(c) if $f \in \mathcal{R}(\alpha)$ and the hypothesis of (b) holds then

$$\left|\sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f d\alpha\right| < \epsilon.$$

Proof: (a) Let P^* be a refinement of P. We know that

$$U(P^*, f, \alpha) \leq U(P, f, \alpha).....(2)$$

$$L(P^*, f, \alpha) \leq L(P, f, \alpha) \text{ (by Theorem 4.7)}$$

$$-L(P^*, f, \alpha) \leq -L(P, f, \alpha).....(3)$$

(2)+(3) gives

$$U(P^*, f, \alpha) - L(P^*, f, \alpha) \le U(P, f, \alpha) - L(P, f, \alpha)$$

< ϵ (by (1))
(*i.e.*) $U(P^*, f, \alpha) - L(P^*, f, \alpha) < \epsilon$

(b) $s_i, t_i \in [x_{i-1}, x_i]; f(s_i), f(t_i) \in f[x_{i-1}, x_i]; m_i \le f(s_i), f(t_i) \le M_i$

$$\therefore |f(s_i) - f(t_i)| \le M_i - m_i \ (\because M_i - m_i \ge 0)$$

$$\Rightarrow |f(s_i) - f(t_i)| \Delta \alpha_i \le (M_i - m_i) \Delta \alpha_i$$

$$\Rightarrow \sum_{i=1}^n |f(s_i) - f(t_i)| \Delta \alpha_i = \sum_{i=1}^n (M_i - m_i) \Delta \alpha_i$$

$$= \sum_{i=1}^n M_i \Delta \alpha_i - \sum_{i=1}^n m_i \Delta \alpha_i$$

$$= U(P, f, \alpha) - L(P, f, \alpha) \ (by \ (1))$$

$$\therefore \sum_{i=1}^n |f(s_i) - f(t_i)| \Delta \alpha_i < \epsilon.$$

(c) We have

$$m_{i} \leq f(t_{i}) \leq M_{i}$$

$$\Rightarrow m_{i} \Delta \alpha_{i} \leq f(t_{i}) \Delta \alpha_{i} \leq M_{i} \Delta \alpha_{i}$$

$$\Rightarrow \sum_{i=1}^{n} m_{i} \Delta \alpha_{i} \leq \sum_{i=1}^{n} f(t_{i}) \Delta \alpha_{i} \leq \sum_{i=1}^{n} M_{i} \Delta \alpha_{i}$$

$$\Rightarrow L(P, f, \alpha) \leq \sum_{i=1}^{n} f(t_{i}) \Delta \alpha_{i} \leq U(P, f, \alpha) \dots (4)$$

$$L(P, f, \alpha) \leq \int_{a}^{b} f d\alpha \leq U(P, f, \alpha) \dots (5)$$

(4) and (5) \Rightarrow

$$\left|\sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f d\alpha \right| \le U(P, f, \alpha) - L(P, f, \alpha)$$
$$= \epsilon \text{ (by (1))}$$
$$\left|\sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f d\alpha \right| < \epsilon.$$

Theorem 4.11 If f is continuous on [a, b] then $f \in \mathcal{R}(\alpha)$. **Proof:** Let $\epsilon > 0$ be given. Choose $\eta > 0$ such that $[\alpha(b) - \alpha(a)]\eta < \epsilon...(1)$ Since f is continuous on [a, b] and [a, b] is compact, f is uniformly continuous. Then there exists $\delta > 0$ such that $|x - \epsilon| < \delta \Rightarrow |f(x) - f(\epsilon)| < \eta.....(2)$ Let $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a, b] such that $\Delta x_i < \delta \therefore$ (2) guarantees that $|M_i - m_i| < \eta$ (i.e.) $M_i - m_i < \eta.....(3)$ Now,

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i - \sum_{i=1}^{n} m_i \Delta \alpha_i$$

$$= \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$

$$< \eta(\sum_{i=1}^{n} \Delta \alpha_i) \text{ (by (3))}$$

$$= \eta[\Delta \alpha_1 + \Delta \alpha_2 + \dots + \Delta \alpha_n]$$

$$= \eta[(\alpha(x_1) - \alpha(x_0)) + (\alpha(x_2) - \alpha(x_1)) + \dots + (\alpha(x_n) - \alpha(x_{n-1}))]$$

$$= \eta(\alpha(x_n) - \alpha(x_0))$$

$$= \eta[\alpha(b) - \alpha(a)]$$

$$< \epsilon$$

 $\therefore U(P, f, \alpha) - L(P, f, \alpha) < \epsilon \text{ (by Theorem 4.9)}$

By Theorem 4.9, $f \in \mathcal{R}(\alpha)$.

Theorem 4.12 If f is monotonic on [a, b] and if α is continuous in [a, b], then $f \in \mathcal{R}(\alpha)$. **Proof:** Let

epsilon > 0 be given. For every positive integer n, we choose a partition P such that $\Delta \alpha_i = \frac{\alpha(b) - \alpha(a)}{n}$. This is possible since α is continuous. **Case(i):** f is monotonic increasing. $\therefore M_i = f(x_i); m_i = f(x_{i-1}) \ \forall i = 1$ 1, 2, ..., n. Now,

$$\begin{split} U(P,f,\alpha) &- L(P,f,\alpha) \\ &= \sum_{i=1}^{n} M_i \Delta \alpha_i - \sum_{i=1}^{n} m_i \Delta \alpha_i \\ &= \sum_{i=1}^{n} (M_i \Delta \alpha_i - m_i \Delta \alpha_i) \\ &= \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i \\ &= \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) (\frac{\alpha(b) - \alpha(a)}{n}) \\ &= \frac{\alpha(b) - \alpha(a)}{n} \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})] \\ &= \frac{\alpha(b) - \alpha(a)}{n} \{ (f(x_1) - f(x_0)) + (f(x_2) - f(x_1)) + \dots \\ &+ (f(x_n) - f(x_{n-1})) \} \\ &= \frac{\alpha(b) - \alpha(a)}{n} [f(x_n) - f(x_0)] \\ &= \frac{\alpha(b) - \alpha(a)}{n} (f(b) - f(a)) \\ &< \epsilon \text{ as } n \to \infty. \\ \therefore f \in \mathcal{R}(\alpha). \end{split}$$

Case(ii): f is monotonic decreasing. $\therefore M_i = f(x_i); m_i = f(x_{i-1}) \ \forall i = 1, 2, ..., n.$ Now,

$$U(P,f,\alpha) - L(P,f,\alpha)$$

= $\sum_{i=1}^{n} (M_i \Delta \alpha_i - \sum_{i=1}^{n} m_i) \Delta \alpha_i$
= $\sum_{i=1}^{n} (M_i \Delta \alpha_i - m_i \Delta \alpha_i)$
= $\sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$
= $\sum_{i=1}^{n} (f(x_{i-1}) - f(x_i))(\frac{\alpha(b) - \alpha(a)}{n})$
= $\frac{\alpha(b) - \alpha(a)}{n} \sum_{i=1}^{n} [f(x_{i-1}) - f(x_i)]$

$$= \frac{\alpha(b) - \alpha(a)}{n} \{ (f(x_0) - f(x_1)) + (f(x_1) - f(x_2)) + \dots + (f(x_{n-1}) - f(x_n)) \}$$

$$= \frac{\alpha(b) - \alpha(a)}{n} [f(x_0) - f(x_n)]$$

$$= \frac{\alpha(b) - \alpha(a)}{n} (f(a) - f(b))$$

$$< \epsilon \text{ as } n \to \infty.$$

$$f \in \mathcal{R}(\alpha).$$

Hence the proof.

· · .

Theorem 4.13 Suppose f is bounded on [a,b], f has only finitely many point of discontinuity on [a,b] and α is continuous at every point at which f is discontinuous, then $f \in \mathcal{R}(\alpha)$.

Proof: Let $\epsilon > 0$ be given. Put $M = \sup|f(x)|$. Let E be the set of points at which f is discontinuous. Since E is finite and α is continuous at every point of E, we can cover E by finitely many disjoint $[u_j, v_j] \subset [a, b]$ such that the sum of the corresponding differences

$$\sum_{j} [\alpha(v_j) - \alpha(u_j)] < \epsilon.$$

Also we place these intervals in such a way that every point of $E \cap (a, b)$ lies in the interval of some $[u_j, v_j]$. Remove the segments (u_j, v_j) from [a, b]. The remaining set K is compact. hence f is uniformly continuous on K. \therefore there exists $\delta > 0$ such that $|s - t| < \delta \Rightarrow |f(s) - f(t)| < \epsilon \quad \forall s, t \in K$. We form a partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b] as follows. Each u_j occurs in P, each v_j occurs in P. No point of any segment (u_j, v_j) occurs in P. If x_{i-1} is not one of the u_j 's then $\Delta x_i < \delta$. we observe that $M_i - m_i \leq 2\mu$, $\forall i$ and $M_i - m_i \leq \epsilon$ unless x_{i-1} is one of the u_j 's. $\therefore U(P, f, \alpha) - L(P, f, \alpha) \leq [\alpha(b) - \alpha(a)]\epsilon + 2M\epsilon$. (By Theorem 4.11) Since ϵ is arbitrary, Theorem 4.9 guarantees that $f \in \mathcal{R}(\alpha)$.

Theorem 4.14 Suppose $f \in \mathcal{R}(\alpha)$ on $[a, b], m \leq f \leq M, \phi$ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b], then $h \in \mathcal{R}(\alpha)$ on [a, b].

Proof: Let $\epsilon > 0$ be given. Since $\phi : [m, M] \to R$ is continuous and [m, M] is compact, ϕ is uniformly continuous. \therefore There exists $\delta > 0$ such that $\delta < \epsilon, |s - t| < \delta \Rightarrow |\phi(s) - \phi(t)| < \epsilon$ for $s, t \in [m, M]$ (1)

Since $f \in \mathcal{R}(\alpha)$, there exists a partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b] such that $U(P, f, \alpha) - L(P, f, \alpha) < \delta^2$ (2)

To Prove: $h \in \mathcal{R}(\alpha)$. Let $M_i^* = \sup h(x), x_{i-1} \leq x \leq x_i$ and $m_i^* = \inf h(x), x_{i-1} \leq x \leq x_i$. Let $A = \{i | 1 \leq i \leq n, M_i - m_i < \delta\}$; B =

 $\{i|1 \le i \le n, M_i - m_i \ge \delta\}$

$$\begin{aligned} \text{for } i \in A, |M_i - m_i| < \delta \Rightarrow |\phi(M_i) - \phi(m_i)| < \epsilon \text{ (by (1))} \\ \Rightarrow |M_i^* - m_i^*| < \epsilon.....(3) \\ \end{aligned}$$
$$\begin{aligned} \text{For } i \in B, |M_i^* - m_i^*| &\leq |M_i^*| + |m_i^*| \\ &\leq k + k \text{ where } k = \sup|\phi(t)|, t \in [m, M] \\ |M_i^* - m_i^*| &\leq 2k....(4) \\ \end{aligned}$$
$$\begin{aligned} \text{Also } \delta \sum_{i \in B} \Delta \alpha_i &\leq \sum_{i \in B} (M_i - m_i) \Delta \alpha_i \\ &\leq \sum_{i=1}^n (M_i - m_i) \Delta \alpha_i \\ &= \sum_{i=1}^n M_i \Delta \alpha_i - \sum_{i=1}^n m_i \Delta \alpha_i \\ &= U(P, f, \alpha) - L(P, f, \alpha) \\ &< \delta^2 \text{ (by (2))} \end{aligned}$$
$$(i.e.) \delta \sum_{i \in B} \Delta \alpha_i < \delta^2 \\ &\Rightarrow \sum_{i \in B} \Delta \alpha_i < \delta.....(5) \end{aligned}$$

$$\begin{aligned} \operatorname{Now} U(P,h,\alpha) - L(P,h,\alpha) &= \sum_{i=1}^{n} M_{i}^{*} \Delta \alpha_{i} - \sum_{i=1}^{n} m_{i}^{*} \Delta \alpha_{i} \\ &= \sum_{i=1}^{n} (M_{i}^{*} - m_{i}^{*}) \Delta \alpha_{i} \\ &= \sum_{i \in A} (M_{i}^{*} - m_{i}^{*}) \Delta \alpha_{i} + \sum_{i \in B} (M_{i}^{*} - m_{i}^{*}) \Delta \alpha_{i} \\ &< \epsilon \sum_{i \in A} \Delta \alpha_{i} + 2k \sum_{i \in B} \Delta \alpha_{i} \text{ (by (3) and (4))} \\ &< \epsilon \sum_{i=1}^{n} \Delta \alpha_{i} + 2k \sum_{i \in B} \Delta \alpha_{i} \\ &< \epsilon [\alpha(b) - \alpha(a)] + 2k \delta \\ &< \epsilon [\alpha(b) - \alpha(a)] + 2k \epsilon \ (\because \delta < \epsilon) \\ &= \epsilon [\alpha(b) - \alpha(a) + 2k] \end{aligned}$$

(i.e.) $U(P, h, \alpha) - L(P, h, \alpha) < \epsilon[\alpha(b) - \alpha(a) + 2k]$ since ϵ is arbitrary, Theorem 4.9, implies that $h \in \mathcal{R}(\alpha)$.

Lemma 4.15 If $f \in \mathcal{R}(\alpha)$ and $f \ge 0$ on [a, b] then $\int_a^b f d\alpha \ge 0$.

Proof: Since $f \ge 0$, $M_i \ge 0 \forall_i$.

$$\therefore \sum_{i=1}^{n} M_i \Delta \alpha_i \ge 0$$

$$\Rightarrow U(P, h, \alpha) \ge 0$$

$$\Rightarrow \inf U(P, h, \alpha) \ge 0$$

$$\Rightarrow \int_a^b f d\alpha \ge 0.$$

Properties of Integral

Theorem 4.16 (a) If $f_1, f_2 \in \mathcal{R}(\alpha)$ on [a, b] then $f_1 + f_2 \in \mathcal{R}(\alpha), cf_1 \in \mathcal{R}(\alpha)$ for every constant c and $\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha, \int_a^b cf_1 d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$ $c \int_a^b f_1 d\alpha.$

(b) If $f_1(x) \leq f_2(x)$ on [a, b] then $\int_a^b f_1 d\alpha \leq \int_a^b f_2 d\alpha$. (c) If $f \in \mathcal{R}(\alpha)$ on [a, b] and a < c < b, then $f \in \mathcal{R}(\alpha)$ on [a, c] and on [a, b] and $\int_a^b f d\alpha = \int_a^c f d\alpha + \int_c^b f d\alpha$

(d) If $f \in \mathcal{R}(\alpha)$ on [a, b] and if $|f(x)| \le M$ then $|\int_a^b f d\alpha| \le [\alpha(b) - \alpha(a)].$ (e) If $f \in R(\alpha_1)$ and $f \in R(\alpha_2)$ then $f \in R(\alpha_1 + \alpha_2)$ and $\int_a^b f d(\alpha_1 + \alpha_2) =$ $\int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}. \quad If \ f \in \mathcal{R}(\alpha) \ and \ c \ is \ positive \ constant \ then \ f \in \mathcal{R}(\alpha)$ and $\int_{a}^{b} f d\alpha = c \int_{a}^{b} f d\alpha.$

Proof: (a) Let $\epsilon > 0$ be given. Since $f_1 \in \mathcal{R}(\alpha)$ and $f_2 \in [a, b]$, there exists two partitions P_1 and P_2 of [a, b] such that $U(P_1, f_1, \alpha) - L(P_1, f_1, \alpha) < \epsilon$ (1) and $U(P_2, f_2, \alpha) - L(P_2, f_2, \alpha) < \epsilon$(2) Let $P = P_1 \cup P_2$ be the common refinement of [a, b]

Let
$$P = P_1 \cup P_2$$
 be the common refinement of $[a, b]$.

$$:: U(P_1, f_1, \alpha) \leq U(P_1, f_1, \alpha)$$

$$L(P_1, f_1, \alpha) \leq L(P_1, f_1, \alpha)$$

$$\Rightarrow U(P, f_1, \alpha) + L(P_1, f_1, \alpha) \leq U(P_1, f_1, \alpha) + L(P, f_1, \alpha)$$

$$\Rightarrow U(P, f_1, \alpha) - L(P_1, f_1, \alpha) \leq U(P_1, f_1, \alpha) - L(P_1, f_1, \alpha)$$

$$U(P, f_1, \alpha) - L(P, f_1, \alpha) < \epsilon \text{ (by (1))......(3)}$$
Similarly $U(P, f_2, \alpha) - L(P, f_2, \alpha) < \epsilon \text{ (by (2))......(4)}$

 $(3)+(4) \Rightarrow$

$$U(P, f_{1}, \alpha) + U(P, f_{2}, \alpha) - (L(P, f_{1}, \alpha)) + L(P, f_{2}, \alpha)$$

$$< 2\epsilon.....(5)$$
Now $L(P, f_{1}, \alpha) + L(P, f_{2}, \alpha) \leq L(P, f_{1} + f_{2}, \alpha)$

$$\leq U(P, f_{1} + f_{2}, \alpha)$$

$$\leq U(P, f_{1}, \alpha) + U(P, f_{2}, \alpha).....(6)$$

 $(5),(6) \Rightarrow U(P, f_1 + f_2, \alpha) - L(P, f_1 + f_2, \alpha) < 2\epsilon. \therefore f_1 + f_2 \in \mathcal{R}(\alpha) \text{ on } [a, b].$ To prove:

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha$$

Since $f_1, f_2 \in \mathcal{R}(\alpha)$, there exists partition P_1 and P_2 of [a, b]

$$U(P_1, f_1, \alpha) < \int_a^b f_1 d\alpha + \epsilon \text{ (by Theorem 4.9)......(1*)}$$
$$U(P_2, f_2, \alpha) < \int_a^b f_2 d\alpha + \epsilon \text{......(2*)}$$

 $(1)+(2) \Rightarrow$

$$U(P_1, f_1, \alpha) + U(P_2, f_2, \alpha) < \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha + 2\epsilon.....(3*)$$

Let $P = P_1 \cup P_2$

$$U(P, f_1, \alpha) \le U(P_1, f_1, \alpha).....(4*)$$

$$U(P, f_2, \alpha) \le U(P_2, f_2, \alpha).....(5*)$$

 $(4^*) + (5^*) \Rightarrow$

$$U(P, f_1, \alpha) + U(P, f_2, \alpha) \le U(P_1, f_1, \alpha) + \le U(P_2, f_2, \alpha)$$

$$< \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha + 2\epsilon.....(6*) \text{ (by (3*))}$$

$$U(P, f_1 + f_2, \alpha) \le U(P, f_1, \alpha) + U(P, f_2, \alpha)$$

$$< \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha + 2\epsilon \text{ (by (6*))}$$

Taking infimum over all partition P,

$$\int_{a}^{b} (f_1 + f_2) d\alpha < \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha + 2\epsilon$$

Since ϵ is arbitrary,

$$\int_{a}^{b} (f_1 + f_2) d\alpha \le \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha \dots (7*)$$

Replacing f_1 and f_2 in (7^{*}) by $-f_1$ and $-f_2$ respectively we get,

$$\int_{a}^{b} (-f_1 - f_2) d\alpha \leq \int_{a}^{b} (-f_1) d\alpha + \int_{a}^{b} (-f_2) d\alpha$$
$$\Rightarrow \int_{a}^{b} (f_1 + f_2) d\alpha \geq \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha \dots (8*)$$

From (7^*) and (8^*) we get,

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha$$

To Prove: $cf_1 \in \mathcal{R}(\alpha)$ where c is a constant. For any partition P, of [a, b]

$$U(P, cf_1, \alpha) = \begin{cases} cU(P, f_1, \alpha) & c \ge 0\\ cL(P, f_1, \alpha) & c \le 0 \end{cases}$$

and

$$L(P, cf_1, \alpha) = \begin{cases} cL(P, f_1, \alpha) & c \ge 0\\ cU(P, f_1, \alpha) & c \le 0 \end{cases}$$
$$U(P, cf_1, \alpha) - L(P, cf_1, \alpha) = \begin{cases} c(U(P, f_1, \alpha) - L(P, f_1, \alpha)) & c \ge 0\\ -c(U(P, f_1, \alpha) - L(P, f_1, \alpha)) & c \le 0 \end{cases}$$
$$U(P, cf_1, \alpha) - L(P, cf_1, \alpha) = |c|(U(P, f_1, \alpha) - L(P, f_1, \alpha)).....(1A)$$

Since $f_1 \in \mathcal{R}(\alpha)$ there exists a partition P of [a, b] such that

$$U(P, f_1, \alpha) - L(P, cf_1, \alpha) < \frac{\epsilon}{|c|} \dots \dots (2A)$$

Sub (2A) in (1A), we get

$$U(P, cf_1, \alpha) - L(P, cf_1, \alpha) < |c| \frac{\epsilon}{|c|}$$
$$U(P, cf_1, \alpha) - L(P, cf_1, \alpha) < \epsilon$$
$$\therefore cf_1 \in \mathcal{R}(\alpha).$$

To Prove:

$$\begin{split} \int_{a}^{b} cf_{1}d\alpha &= \int_{a}^{b} cf_{1}d\alpha \\ \text{If } c \geq 0, \text{ then } U(P,cf_{1},\alpha) &= cU(P,f_{1},\alpha) \\ \Rightarrow \inf U(P,cf_{1},\alpha) &= \inf(cU(P,f_{1},\alpha)) \\ \Rightarrow \inf U(P,cf_{1},\alpha) &= c\inf U(P,cf_{1},\alpha) \\ \Rightarrow \int_{a}^{b} cf_{1}d\alpha &= \int_{a}^{b} cf_{1}d\alpha \\ \text{If } c \leq 0, \text{ then } L(P,cf_{1},\alpha) &= cU(P,f_{1},\alpha) \\ &= -|c|U(P,f_{1},\alpha) \ (\because c \leq 0) \\ \Rightarrow \sup L(P,cf_{1},\alpha) &= \sup(-|c|U(P,f_{1},\alpha)) \\ &= |c|\sup(-U(P,f_{1},\alpha)) \\ &= -|c|\inf(U(P,f_{1},\alpha)) \\ &= -|c|\inf(U(P,f_{1},\alpha)) \\ \Rightarrow \int_{a}^{b} cf_{1}d\alpha &= -|c| \int_{a}^{b} f_{1}d\alpha \\ &= c \int_{a}^{b} f_{1}d\alpha \\ \text{When } c = 0, \int_{a}^{b} cf_{1}d\alpha &= \int_{a}^{b} f_{1}d\alpha \ (= 0) \end{split}$$

To Prove:

$$f_1 \le f_2 \Rightarrow \int_a^b f_1 d\alpha \le \int_a^b f_2 d\alpha$$

Proof of b: Given
$$f_1 \leq f_2 \Rightarrow f_2 - f_1 \geq 0$$

$$\Rightarrow \int_{a} (f_{2} - f_{1})d\alpha \ge 0$$

$$\Rightarrow \int_{a}^{b} f_{2} + \int_{a}^{b} (-f_{1})d\alpha \ge 0$$

$$\Rightarrow \int_{a}^{b} f_{2}d\alpha + \int_{a}^{b} (-f_{1})d\alpha \ge 0 \text{ (by (a))}$$

$$\Rightarrow \int_{a}^{b} f_{2}d\alpha - \int_{a}^{b} f_{1}d\alpha \ge 0$$

$$\Rightarrow \int_{a}^{b} f_{1}d\alpha \le \int_{a}^{b} f_{2}d\alpha$$

Proof of (c): Given $f \in \mathcal{R}(\alpha)$ on [a, b] and a < c < b for $\epsilon < 0$, there exists a partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon....(1B)$$

Let $P^* = P \cup \{c\}$. Now P^* is a refinement of P and induces two partitions P_1 and P_2 of [a, c] and [c, b] respectively. Now,

$$\begin{split} U(P,f,\alpha) &\geq U(P^*,f,\alpha) \\ &= U(P_1,f,\alpha) + U(P_2,f,\alpha).....(2B) \\ &\Rightarrow U(P_1,f,\alpha) \leq U(P,f,\alpha)......(3B) \\ &\text{and } U(P_2,f,\alpha) \leq U(P,f,\alpha)......(4B) \\ &L(P,f,\alpha) \leq L(P^*,f,\alpha) \\ &= L(P_1,f,\alpha) + L(P_2,f,\alpha)......(5B) \\ &-L(P,f,\alpha) \geq -L(P_1,f,\alpha) - L(P_2,f,\alpha) \\ &-L(P_1,f,\alpha) \leq -L(P,f,\alpha)......(6B) \\ &\text{and } -L(P_2,f,\alpha) \leq -L(P,f,\alpha)......(7B) \\ (3B) + (6B) \Rightarrow U(P_1,f,\alpha) - L(P_1,f,\alpha) \leq U(P,f,\alpha) - L(P,f,\alpha) \text{ (by (1B))} \\ &< \epsilon \\ &\therefore f \in \mathcal{R}(\alpha) \text{ on } [a,c]. \\ (4B) + (7B) \Rightarrow U(P_2,f,\alpha) - L(P_2,f,\alpha) \leq U(P,f,\alpha) - L(P,f,\alpha) \text{ (by (1B))} \\ &< \epsilon \\ &\therefore f \in \mathcal{R}(\alpha) \text{ on } [c,b]. \end{split}$$

To Prove:

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$$

$$(2B) \Rightarrow U(P, f, \alpha) \ge U(P_1, f, \alpha) + U(P_2, f, \alpha)$$
$$\ge \int_a^c f d\alpha + \int_c^b f d\alpha$$
$$\Rightarrow \inf U(P, f, \alpha) \ge \int_a^c f d\alpha + \int_c^b f d\alpha \dots (8B)$$
$$(5B) \Rightarrow L(P, f, \alpha) \le L(P_1, f, \alpha) + L(P_2, f, \alpha)$$
$$\le \int_a^c f d\alpha + \int_c^b f d\alpha$$
$$\Rightarrow \sup U(P, f, \alpha) \le \int_a^c f d\alpha + \int_c^b f d\alpha$$
$$\int_a^b f d\alpha \le \int_a^c f d\alpha + \int_c^b f d\alpha \dots (9B)$$

 \therefore (8B) and (9B), we get

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$$

Proof of (d): Given $f \in \mathcal{R}(\alpha)$ and $|f(x)| \leq M$ To Prove: $|\int_a^b f d\alpha| \leq [\alpha(b) - \alpha(a)]$ we have, for any partition P of [a, b],

$$\begin{aligned} \int_{a}^{b} f d\alpha &\leq U(P, f, \alpha) \\ \left| \int_{a}^{b} f d\alpha \right| &\leq |U(P, f, \alpha)| \\ &= \left| \sum_{i=1}^{n} M_{i} \Delta \alpha_{i} \right| \\ &< \sum_{i=1}^{n} |M_{i} \Delta \alpha_{i}| \\ &= \sum_{i=1}^{n} |M_{i}| \Delta \alpha_{i} \ (\because \Delta \alpha_{i} \geq 0) \\ &\leq \sum_{i=1}^{n} M \Delta \alpha_{i} \ (\because |f(x)| \leq M) \\ &= M \sum_{i=1}^{n} \Delta \alpha_{i} \\ \left| \int_{a}^{b} f d\alpha \right| &\leq M[\alpha(b) - \alpha(a)] \end{aligned}$$

Proof of (e): Given $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$. To Prove: $f \in \mathcal{R}(\alpha_1 + \alpha_2)$.

Let $\alpha = \alpha_1 + \alpha_2$. For any partition p of [a, b],

$$\begin{split} U(P, f, \alpha) &= \sum_{i=1}^{n} M_i \Delta \alpha_i \\ &= \sum_{i=1}^{n} M_i (\alpha(x_i) - \alpha(x_{i-1})) \\ &= \sum_{i=1}^{n} M_i [(\alpha_1 + \alpha_2)(x_i) - (\alpha_1 + \alpha_2)(x_{i-1})] \\ &= \sum_{i=1}^{n} M_i [\alpha_1(x_i) + \alpha_2(x_i)] - [\alpha_1(x_{i-1}) + \alpha_2(x_{i-1})] \\ &= \sum_{i=1}^{n} M_i [\alpha_1(x_i) - \alpha_1(x_{i-1})] + \sum_{i=1}^{n} M_i [\alpha_2(x_i) - \alpha_2(x_{i-1})] \\ U(P, f, \alpha) &= U(P, f, \alpha_1) + U(P, f, \alpha_2) \dots (1C) \\ \text{Similarly } L(P, f, \alpha) &= L(P, f, \alpha_1) + L(P, f, \alpha_2) \dots (2C) \end{split}$$

since $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$, there exists partitions P_1 and P_2 of [a, b] such that

$$U(P_1, f, \alpha_1) - L(P_1, f, \alpha_1) < \epsilon$$

and $U(P_2, f, \alpha_2) - L(P_2, f, \alpha_2) < \epsilon$

Let P^* be the common refinement of P_1 and P_2 of [a, b]. $P^* = P_1 \cup P_2$

$$U(P^*, f, \alpha_1) - L(P^*, f, \alpha_1) < \epsilon.....(3C)$$

$$U(P^*, f, \alpha_2) - L(P^*, f, \alpha_2) < \epsilon....(4C) \text{ (by Theorem 4.10)}$$

Now,

$$\begin{split} U(P^*, f, \alpha) - L(P^*, f, \alpha) &= U(P^*, f, \alpha_1) + U(P^*, f, \alpha_2) \\ &\quad - \left[L(P^*, f, \alpha_1) + L(P^*, f, \alpha_2) \right] \text{ (by (1C) and (2C))} \\ &= \left[U(P^*, f, \alpha_1) - L(P^*, f, \alpha_1) \right] \\ &\quad + \left[U(P^*, f, \alpha_2) - L(P^*, f, \alpha_2) \right] \\ &\quad < \epsilon + \epsilon \text{ (by (3C) and (4C))} \\ U(P^*, f, \alpha) - L(P^*, f, \alpha) < 2\epsilon. \end{split}$$

Since ϵ arbitrary, we get $f \in \mathcal{R}(\alpha)$ (i.e.) $f \in \mathcal{R}(\alpha_1 + \alpha_2)$. To Prove:

$$\int_{a}^{b} d(\alpha_{1} + \alpha_{2}) = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}$$

$$\begin{split} (1C) \Rightarrow U(P, f, \alpha) &= U(P, f, \alpha_1) + U(P, f, \alpha_2) \\ &\geq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \\ \Rightarrow \inf U(P, f, \alpha) &\geq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \\ &\int_a^b f d\alpha \geq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \dots \dots (5C) \\ (2C) \Rightarrow L(P, f, \alpha) &= L(P, f, \alpha_1) + L(P, f, \alpha_2) \\ &\leq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \\ &\sup U(P, f, \alpha) \leq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \dots \dots (6C) \end{split}$$

from (5C) and (6C) we get,

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}$$

(*i.e.*)
$$\int_{a}^{b} d(\alpha_{1} + \alpha_{2}) = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}.$$

To Prove: Given $f \in \mathcal{R}(\alpha)$ and c > 0To Prove: $f \in \mathcal{R}(\alpha)$, for any partition P,

$$\begin{split} U(P,f,c\alpha) &= \sum_{i=1}^{n} M_{i}\Delta(c\alpha_{i}) \\ &= \sum_{i=1}^{n} M_{i}(c\alpha(x_{i}) - c\alpha(x_{i-1})) \\ &= \sum_{i=1}^{n} M_{i}c[\alpha(x_{i}) - \alpha(x_{i-1})] \\ &= \sum_{i=1}^{n} cM_{i}\Delta\alpha_{i} \\ &= cU(P,f,\alpha).....(7C) \\ \text{Similarly } L(P,f,c\alpha) &= cL(P,f,\alpha) \\ U(P,f,c\alpha) - L(P,f,c\alpha) &= cU(P,f,\alpha) - cL(P,f,\alpha) \\ &= c[U(P,f,\alpha) - L(P,f,\alpha)].....(8C) \end{split}$$

Since $f \in \mathcal{R}(\alpha)$, given $\epsilon > 0$, there exists partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \frac{\epsilon}{c} \dots \dots (9C)$$

sub (9C) in (8C) we get

$$U(P, f, c\alpha) - L(P, f, c\alpha) < c \cdot \frac{\epsilon}{c} = \epsilon$$

 $\therefore f \in \mathcal{R}(c\alpha)$. To Prove:

$$\int_{a}^{b} fd(c\alpha) = c \int_{a}^{b} fd\alpha$$

$$(7C) \Rightarrow U(P, f, c\alpha) = cU(P, f, \alpha)$$

$$\Rightarrow \inf U(P, f, c\alpha) = \inf cU(P, f, \alpha)$$

$$= c \inf U(P, f, \alpha)$$

$$\Rightarrow \int_{a}^{b} fd(c\alpha) = c \int_{a}^{b} fd\alpha$$

Theorem 4.17 If $f, g \in \mathcal{R}(\alpha)$ on [a, b], then (a) $f \cdot g \in \mathcal{R}(\alpha)$ (b) $|f| \in \mathcal{R}(\alpha)$ and

$$\left| \int_{a}^{b} f d\alpha \right| \leq \int_{a}^{b} |f| d\alpha.$$

Proof: (a) Let $\phi(t) = t^2$, clearly ϕ is continuous

$$h(x) = \phi(f(x)) \text{ (by Theorem 4.14)}$$
$$= f(x)^{2}$$
$$= f^{2}(x)$$
$$\therefore f^{2} \in \mathcal{R}(\alpha).....(1) (\because f \in \mathcal{R}(\alpha))$$
Now, $f, g \in \mathcal{R}(\alpha)$
$$\Rightarrow f + g, f - g \in \mathcal{R}(\alpha) \text{ (by Theorem 4.16)}$$
$$\Rightarrow (f + g)^{2}, (f - g)^{2} \in \mathcal{R}(\alpha)$$
$$\Rightarrow (f + g)^{2} - (f - g)^{2} \in \mathcal{R}(\alpha)$$
$$\Rightarrow 4fg \in \mathcal{R}(\alpha)$$
$$\Rightarrow fg \in \mathcal{R}(\alpha) \text{ (by Theorem 4.16)}$$

(b) $|f| \in \mathcal{R}(\alpha)$ and $|\int_a^b f d\alpha| \leq \int_a^b |f| d\alpha$. To Prove: $|f| \in \mathcal{R}(\alpha)$. Let $\phi(t) = |t|$; $h(x) = \phi(f(x)) = |f(x)|$. \therefore By Theorem 4.14, $|f| \in \mathcal{R}(\alpha)$ To prove:

$$\left|\int_{a}^{b} f d\alpha\right| \leq \int_{a}^{b} |f| d\alpha.$$

Choose $c = \pm 1$ so that $c \int_a^b f d\alpha \ge 0$

$$\therefore |\int_{a}^{b} f d\alpha| = c \int_{a}^{b} f d\alpha$$

$$= \int_{a}^{b} c f d\alpha \text{ (by Theorem 4.16(a))}$$

$$\le \int_{a}^{b} |f| d\alpha \text{ ($\because cf \le |f|$) by Theorem 4.16(b)}$$

Hence the proof.

Definition 4.18 Unit Step Function:

$$I(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{if } x > o \end{cases}$$

Theorem 4.19 If a < s < b, f is bounded on [a, b], f is continuous at s and $\alpha(x) = I(x - s)$, then

$$\int_{a}^{b} f d\alpha = f(s).$$

Proof: Consider partitions $P = \{x_0, x_1, x_2, x_b\}$ of [a, b] where $x_0x_1 = s, s < x_2 < b, x_2 = b$. Now,

$$\begin{split} U(P, f, \alpha) &= \sum_{i=1}^{3} M_i \Delta \alpha_i \\ &= M_i \Delta \alpha_1 + M_2 \Delta \alpha_2 + M_3 \Delta \alpha_3 \\ &= M_1 [\alpha(x_1) - \alpha(x_0)] + M_2 [\alpha(x_2) - \alpha(x_1)] + M_3 [\alpha(x_3) - \alpha(x_2)] \\ &= M_1 [I(x_1 - s) - I(x_0 - s)] + M_2 [I(x_2 - s) - I(x_1 - s)] \\ &+ M_3 [I(x_3 - s) - I(x_2 - s)] \\ &= M_1 [I(s - s) - I(a - s)] + M_2 [I(x_2 - s) - I(s - s)] \\ &+ M_3 [I(b - s) - I(x_2 - s)] \\ &= M_1 [I(0) - I(a - s)] + M_2 [I(x_2 - s) - I(0)] \\ &+ M_3 [I(b - s) - I(x_2 - s)] \\ &= M_1 [0 - 0] + M_2 [1 - 0] + M_3 [1 - 1] \text{ (by definition of } i) \\ &= M_2 \end{split}$$

In a similar fashion we can get $L(P, f, \alpha) = m_2$.

$$\int_{a}^{b} f d\alpha = \inf U(P, f, \alpha) = \sup L(P, f, \alpha)$$
$$= \inf M_{2} = \sup m_{2}$$
$$= f(s) \ (\because x_{2} \to s, f(x_{2}) \to f(x) \text{ as } f \text{ is continuous at } s)$$

Theorem 4.20 Suppose $c_n \ge 0$ for $1, 2, 3..., \sum c_n$ converges, $\{s_n\}$ is a sequence of distinct point in (a, b) and $\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n)$. Let f be continuous on [a, b], then

$$\int_{a}^{b} f d\alpha = \sum_{n=1}^{\infty} c_n f(s_n).$$

Proof: We have $|I(x - s_n)| \le 1$. $\therefore |c_n I(x - s_n)| \le c_n$. Since

$$\sum_{n=1}^{\infty} c_n$$

is convergent, by comparison test,

$$\sum_{n=1}^{\infty} c_n I(x - s_n)$$

also converges. Now,

$$\alpha(a) = \sum_{n=1}^{\infty} c_n I(a - s_n)$$

= 0.....(1) (:: $I(a - s_n) = 0$)
and $\alpha(b) = \sum_{n=1}^{\infty} c_n I(b - s_n)$
= $\sum_{n=1}^{\infty} c_n(2)$ (:: $I(b - s_n) = 0$)

Claim: α is monotonically increasing. Let x < y and let $x < s_k < y$

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n)$$
$$= c_1 + c_2 + \dots + c_{k-1}$$
$$\alpha(y) = \sum_{n=1}^{\infty} c_n I(y - s_n)$$
$$= c_1 + c_2 + \dots + c_{k-1} + c_k$$
$$\therefore \alpha(x) \le \alpha(y)$$

Hence the claim. Since

$$\sum_{n=1}^{\infty} c_n$$

is convergent, given $\epsilon > 0$, there exists N > such that

$$\sum_{n=N+1}^{\infty} c_n < \epsilon.....(3)$$

Let

$$\alpha_1(x) = \sum_{n=1}^N c_n I(x - s_n)$$

$$\alpha_2(x) = \sum_{n=N+1}^\infty c_n I(x - s_n)$$

Clearly $\alpha(x) = \alpha_1(x) + \alpha_2(x)$. Let $\alpha_{1i} = I(x - s_i), i = 1, 2, ..., N$.

$$\therefore \alpha_1(x) = \sum_{n=1}^N c_n \alpha_{1n}(x) = (c_1 \alpha_{11} + c_2 \alpha_{12} + \dots + c_N \alpha_{1N}) x (or) \alpha_1 = c_1 \alpha_{11} + c_2 \alpha_{12} + \dots + c_N \alpha_{1N}$$

Now,

$$\int_{a}^{b} f d\alpha_{1} = \int_{a}^{b} f d(c_{1}\alpha_{11} + c_{2}\alpha_{12} + \dots + c_{N}\alpha_{1N})$$

= $c_{1} \int_{a}^{b} f d\alpha_{11} + c_{2} \int_{a}^{b} f d\alpha_{12} + \dots + c_{N} \int_{a}^{b} f d\alpha_{1N}$ (by Theorem 4.16(e))
= $c_{1}f(s_{1}) + c_{2}f(s_{2}) + \dots + c_{N}f(s_{N})$ (by Theorem 4.19)
= $\sum_{n=1}^{N} c_{n}f(s_{n})\dots\dots(4)$

Now,

$$\alpha_2(a) = \sum_{n=N+1}^{\infty} c_n I(a - s_n)$$
$$= 0.....(5)$$
$$\alpha_2(b) = \sum_{n=N+1}^{\infty} c_n I(b - s_n)$$
$$= \sum_{n=N+1}^{\infty} c_n$$
$$< \epsilon \text{ (by (3)).....(6)}$$

Let $M = |f(x)|, x \in [a, b]$. By Theorem 4.16(d),

$$\left| \int_{a}^{b} f d\alpha_{2} \right| \leq [\alpha_{2}(b) - \alpha_{2}(a)]$$
$$\leq M\epsilon \text{ (by (5)and(6))},$$
$$(i.e.) \left| \int_{a}^{b} f d\alpha_{2} \right| \leq M\epsilon$$
$$\Rightarrow \left| \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2} - \int_{a}^{b} f d\alpha_{1} \right| \leq M\epsilon$$

$$\Rightarrow \left| \int_{a}^{b} f d(\alpha_{1} + \alpha_{2}) - \int_{a}^{b} f d\alpha_{1} \right| \leq M \epsilon \text{ (by theorem 4.16(d))}$$
$$\Rightarrow \left| \int_{a}^{b} f d\alpha - \sum_{n=1}^{N} c_{n} f(s_{n}) \right| \leq M \epsilon \text{ (by (4))}$$

Taking limits as $N \to \infty$,

$$\left| \int_{a}^{b} f d\alpha - \sum_{n=1}^{\infty} c_{n} f(s_{n}) \right| \leq M\epsilon$$
$$\therefore \left| \int_{a}^{b} f d\alpha \epsilon \right| = \sum_{n=1}^{\infty} c_{n} f(s_{n})$$

Theorem 4.21 Assume α increases monotonically and $\alpha' \in \mathcal{R}$ on [a, b], Let f be a bounded real function on [a, b], then $f \in \mathcal{R}(\alpha)$ iff $f\alpha' \in \mathcal{R}$. In that case $\int_a^b f d\alpha = \int_a^b f(x)\alpha'(x)dx$. **Proof:** Let $\epsilon > 0$ be given. Since $\alpha' \in R$, there exists a partition P = $\{x_1, x_2, ..., x_n\}$ of [a, b] such that $U(P, \alpha') - L(P, \alpha') < \epsilon$ (1) By mean value theorem , there exists $t :\in [x_{i-1}, x_i]$ such that $\alpha(x_i) - \alpha(x_{i-1}) = \alpha'(t_i)(x_i - x_{i-1})$ (i.e.) $\Delta \alpha_i = \alpha'(t_i)\Delta x_i$ (2) By Theorem 4.10(b), $\forall s_i, t_i \in [x_{i-1}, x_i]$

$$\sum_{i=1}^{n} |\alpha'(s_i) - \alpha'(t_i)| \Delta x_i < \epsilon.....(3)$$

Now,

$$\begin{aligned} \left| \sum_{i=1}^{n} f(s_{i}) \Delta \alpha_{i} - \sum_{i=1}^{n} f(s_{i}) \alpha'(s_{i}) \Delta x_{i} \right| \\ &= \left| \sum_{i=1}^{n} f(s_{i}) \alpha'(t_{i}) \Delta x_{i} - \sum_{i=1}^{n} f(s_{i}) \alpha'(s_{i}) \Delta x_{i} \right| \\ &= \left| \sum_{i=1}^{n} f(s_{i}) [\alpha'(t_{i}) - \alpha'(s_{i})] \Delta x_{i} \right| \\ &\left| \sum_{i=1}^{n} f(s_{i}) \Delta \alpha_{i} - \sum_{i=1}^{n} f(s_{i}) \alpha'(s_{i}) \Delta x_{i} \right| \\ &\leq \sum_{i=1}^{n} |f(s_{i})| |\alpha'(t_{i}) - \alpha'(s_{i})| \Delta x_{i} \\ &\leq \sum_{i=1}^{n} M |\alpha'(t_{i}) - \alpha'(s_{i})| \Delta x_{i} \\ &\leq M \epsilon \text{ (by (3))} \end{aligned}$$
$$(i.e.) \left| \sum_{i=1}^{n} f(s_{i}) \Delta \alpha_{i} - \sum_{i=1}^{n} f(s_{i}) \alpha'(s_{i}) \Delta x_{i} \right| \leq M \epsilon$$
$$\left| \sum_{i=1}^{n} f(s_{i}) \Delta \alpha_{i} - \sum_{i=1}^{n} f(\alpha')(s_{i}) \Delta x_{i} \right| \leq M \epsilon.....(4)$$

Since inequality (4) is true for any s_i in $[x_{i-1}, x_i]$, we can replace $(f\alpha')(s_i)$ by M'_i and m'_i , where $m'_i = \inf(f\alpha')s_i$, $M'_i = \sup(f\alpha')(s_i)$, $s_i \in [x_{i-1}, x_i]$

$$\left|\sum_{i=1}^{n} f(s_i) \Delta \alpha_i - \sum_{i=1}^{n} M'_i \Delta x_i\right| \le M \epsilon.....(5)$$

and
$$\left|\sum_{i=1}^{n} f(s_i) \Delta \alpha_i - \sum_{i=1}^{n} m'_i \Delta x_i\right| \le M \epsilon.....(6)$$

Again by replacing $f(s_i)$ by M_i in (5) and by m_i in (6) we get

$$\left| \sum_{i=1}^{n} M'_{i} \Delta \alpha_{i} - \sum_{i=1}^{n} M'_{i} \Delta x_{i} \right| \leq M\epsilon \text{ and}$$
$$\left| \sum_{i=1}^{n} m'_{i} \Delta \alpha_{i} - \sum_{i=1}^{n} m'_{i} \Delta x_{i} \right| \leq M\epsilon$$
$$\Rightarrow |U(P, f, \alpha) - U(P, f, \alpha')| \leq M\epsilon.....(7) \text{ and}$$
$$|L(P, f, \alpha) - L(P, f, \alpha')| \leq M\epsilon.....(8)$$

Since ϵ is arbitrary, (7) and (8)

$$\Rightarrow U(P, f, \alpha) = U(P, f, \alpha') \text{ and}$$

$$L(P, f, \alpha) = L(P, f, \alpha')$$

$$\Rightarrow \inf U(P, f, \alpha) = \inf U(P, f, \alpha') \text{ and}$$

$$\sup L(P, f, \alpha) = \sup L(P, f, \alpha')$$

$$\Rightarrow \int_{a}^{\bar{b}} f d\alpha = \int_{a}^{\bar{b}} (f \alpha') d\alpha \dots (9) \text{ and}$$

$$\int_{\underline{a}}^{b} f d\alpha = \int_{\underline{a}}^{b} (f \alpha') d\alpha \dots (10)$$

$$\therefore f \in \mathcal{R}(\alpha) \Leftrightarrow \int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\bar{b}} f d\alpha$$

$$\Leftrightarrow \int_{\underline{a}}^{b} (f \alpha') d\alpha = \int_{a}^{\bar{b}} (f \alpha') d\alpha \text{ (by (9) and (10))}$$

$$\Leftrightarrow f(\alpha') \in \mathcal{R}.$$
Now,
$$\int_{a}^{b} f d\alpha = \int_{a}^{\bar{b}} f d\alpha$$

$$= \int_{a}^{\bar{b}} (f \alpha') dx \text{ (by (9))}$$

$$= \int_{a}^{b} (f \alpha') dx$$

$$= \int_{a}^{b} (f \alpha') dx$$

$$\therefore \int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$$

Remark 4.22 The above theorem gives the relation of \mathcal{R} integral and $\mathcal{R}(\alpha)$ integral.

Theorem 4.23 Change of Variable: Suppose ϕ is a strictly increasing function that maps an interval [A, B] onto [a, b]. Suppose α is monotonically increasing on [a, b] and $f \in \mathcal{R}(\alpha)$ on [a, b]. Define β and g on [A, B] by $\beta(y) = \alpha(\phi(y)), g(y) = f(\phi(y))$, then $g \in \mathcal{R}(\beta)$ and $\int_A^B gd(\beta) = \int_a^b fd\alpha$. **Proof:** $g(y) = (f \cdot \phi)x = f(\phi(y)) = f(x)$

$$[A, B] \xrightarrow{\phi} [a, b] \xrightarrow{f} \mathcal{R}$$
$$[A, B] \xrightarrow{\phi} [a, b] \xrightarrow{\alpha} \mathcal{R}$$
$$\beta(y) = (\alpha \cdot \phi)y$$
$$= \alpha(\phi(y))$$
$$= \alpha(x)$$

Let $P = \{x_0, x_1, x_2, ..., x_n\}$ be any partition of [a, b]. Since ϕ is onto for each *i*, there exists $y_i \in [A, B]$ such that $\phi(y_i) = x_i$, i = 0, 1, 2, ..., n. \therefore $\{y_0, y_1, y_2, ..., y_n\}$ is a partition of [A, B] every partition of [A, B] can be obtained in this way (since ϕ is monotonically increasing)

For
$$y \in [y_{i-1}, y_i]$$

 $g(y) = (f \cdot \phi)y$
 $g(y) = f(\phi(y))$
 $= f(x)$ where $x = \phi(y), x \in [x_{i-1}, x_i]$
 $\Rightarrow \sup g(y) = \sup f(x)$
 $\Rightarrow M_{i'} = M_i.....(1)$
Similarly $\inf g(y) = \inf f(x)$
 $m_{i'} = m_i.....(2)$
Now $\Delta\beta_i = \beta(y_i) - \beta(y_{i-1})$
 $= (\alpha \circ \phi)y_i - (\alpha \circ \phi)y_{i-1}$
 $= \alpha(\phi(y_i)) - \alpha(\phi(y_{i-1}))$
 $= \alpha(x_i) - \alpha(x_{i-1})$
 $= \Delta\alpha_i.....(3)$
 $\therefore U(Q, g, \beta) = \sum_{i=1}^n M'_i \Delta\beta_i$
 $= \sum_{i=1}^n M_i \Delta\alpha_i \text{ (by (1) and (3))}$
 $= U(P, f, \alpha).....(4)$
Similarly $L(Q, g, \beta) = L(P, f, \alpha).....(5)$

Since $f \in \mathcal{R}(\alpha)$, given $\epsilon > 0$, there exists a partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$$

$$\Rightarrow U(Q, g, \beta) - L(Q, g, \beta) < \epsilon \text{ (by (4) and (5))}$$

$$\therefore g \in \mathcal{R}(\beta)$$

Also $\int_{A}^{B} gd\beta = \inf U(Q, g, \beta)$

$$= \inf U(P, f, \alpha) \text{ (by (4))}$$

$$= \int_{a}^{b} fd\alpha.$$

Note 4.24 Let $\alpha(x) = x$ and $\phi' \in \mathcal{R}$ on [A, B].

$$\therefore \beta(y) = (\alpha \circ \phi)y, = \alpha(\phi(y)) = \phi(y) \ \forall y \in [A, B] \therefore \beta = \phi \int_{A}^{B} gd\beta = \int_{a}^{b} fd\alpha \ (by \ previous \ theorem) \int_{a}^{b} f(x)dx = \int_{A}^{B} gd\beta = \int_{A}^{B} gd\phi = \int_{A}^{B} g(y)\phi'(y)dy \ (by \ theorem \ 4.21)$$

Integrations and Differentiations:

Theorem 4.25 Let $f \in R$ on [a, b], for $a \leq x \leq b$, put $F(x) = \int_a^x f(t)dt$, then F is continuous on [a, b], further more if f is continuous at some point x_0 of [a, b], then F is differentiable at x_0 and $F'(x_0) = f(x_0)$. **Proof:** Given $F(x) = \int_a^x f(t)dt$. To Prove: F(x) is continuous on [a, b]. Let $a \leq x \leq y \leq b$. Now,

$$\begin{split} F(y) - F(x) &= \int_{a}^{y} f(t)dt - \int_{a}^{x} f(t)dt \\ &= \int_{a}^{x} f(t)dt + \int_{x}^{y} f(t)dt - \int_{a}^{x} f(t)dt \\ &= \int_{x}^{y} f(t)dt \\ \Rightarrow |F(y) - F(x)| = |\int_{x}^{y} f(t)dt| \\ &\leq \int_{x}^{y} |f(t)|dt \\ &\leq \int_{x}^{y} Mdt \text{ where } M = \sup |f(t)|, \ t \in [a,b] \\ &= M(y-x) \\ (i.e.) \ |F(y) - F(x)| \leq M|y-x| \ (\because (y-x) = 0) \end{split}$$

Given $\epsilon > 0$, there exists $\delta = \frac{\epsilon}{M}$ such that $|y - x| < \delta \Rightarrow |F(y) - F(x)| < \epsilon$ (i.e.) F is continuous on [a, b]. (infact F is uniformly continuous on [a, b]). Suppose f is continuous at $x_0 \in [a, b]$. To Prove: $F'(x_0) = f(x_0)$. Given $\epsilon > 0$, there exists $\delta > 0$ such that $|t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \epsilon$ for $t \in [a, b]$ (1) Let $x_0 - \delta < s \le x_0 \le t \le x_0 + \delta$. Now,

$$\begin{split} F(t) - F(s) &= \int_{a}^{t} f(t)dt - \int_{a}^{s} f(t)dt \\ &= \int_{a}^{s} f(t)dt + \int_{s}^{t} f(t)dt - \int_{a}^{s} f(t)dt \\ F(t) - F(s) &= \int_{s}^{t} f(t)dt \\ &\Rightarrow \frac{F(t) - F(s)}{t - s} = \frac{1}{t - s} \int_{s}^{t} f(t)dt \\ &\Rightarrow \frac{F(t) - F(s)}{t - s} - f(x_{0}) = \frac{1}{t - s} \int_{s}^{t} f(t)dt - f(x_{0}) \\ \frac{F(t) - F(s)}{t - s} - f(x_{0}) &= \frac{1}{t - s} \{\int_{s}^{t} f(t)dt - (t - s)f(x_{0})\} \\ &= \frac{1}{t - s} \{\int_{s}^{t} f(t)dt - \int_{s}^{t} f(x_{0})dt\} \\ &= \frac{1}{t - s} \int_{s}^{t} (f(t) - f(x_{0}))dt \\ \left| \frac{F(t) - F(s)}{t - s} - f(x_{0}) \right| &= \left| \frac{1}{t - s} \int_{s}^{t} (f(t) - f(x_{0}))dt \right| \\ &\leq \frac{1}{t - s} \int_{s}^{t} |f(t) - f(x_{0})|dt \\ &\leq \frac{1}{t - s} \int_{s}^{t} dt (by (1)) \\ \left| \frac{F(t) - F(s)}{t - s} - f(x_{0}) \right| &< \epsilon \end{split}$$

It follows that $F'(x_0) = f(x_0)$.

Theorem 4.26 The Fundamental Theorem of Calculus: If $f \in R$ on [a, b] and if there is a differentiable function F such that F' = f, then $\int_a^b f(x)dx = F(b) - F(a)$. **Proof:** Since $f \in R$ on [a, b], given $\in 0$, there exists a partition P =

 $\{x_0, x_1, x_2, ..., x_n\}$ of [a, b] such that $U(P, f) - L(P, f) < \epsilon$ (1)

Since F is differentiable we can apply the mean value theorem to it on $[x_{i-1}, x_i]$. There exists $t_i \in [x_{i-1}, x_i]$ such that

$$F(x_i) - F(x_{i-1}) = (x_{i-1} - x_i)F'(t_i) = \Delta x_i f(t_i) \ (\because F' = f)$$

Summing over i, we get,

By Theorem 4.10(c), (1) implies that

$$\left|\sum_{i=1}^{n} f(t_i)\Delta x_i - \int_a^b f(x)dx\right| < \epsilon.....(3)$$

Using (2) and (3) we get, $|(F(b) - F(a)) - \int_a^b f(x) dx| < \epsilon$. Since ϵ is arbitrary, $\int_a^b f(x) dx = F(b) - F(a)$. Hence the proof.

Theorem 4.27 Integration by parts: Suppose F and G are differentiable functions on $[a, b], F' = f \in \mathcal{R}, G' = g \in \mathcal{R}$, then

$$\int_a^b f(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)dx.$$

Proof: Let H(x) = F(x)G(x). \therefore H'(x) = F(x)G'(x) + F'(x)G(x) = F(x)g(x) + f(x)G(x)..... (1)

Given f and $g \in \mathcal{R}$. Since F and G are differentiable, they are continuous. \therefore By Theorem 4.11, F and G are integrable $(\in \mathcal{R})$. \therefore By Theorem 4.16 $F(x)g(x) + f(x)G(x) \in \mathcal{R}$ (i.e.) $H'(x) \in R$. By fundamental theorem of calculus,

$$\int_{a}^{b} H'(x)dx = H(b) - H(a)$$

$$(i.e.) \quad \int_{a}^{b} (F(x)g(x) + f(x)G(x))dx = F(b)G(b) - F(a)G(a)$$

$$\Rightarrow \int_{a}^{b} F(x)g(x)dx + \int_{a}^{b} f(x)G(x)dx = F(b)G(b) - F(a)G(a)$$

$$\Rightarrow \int_{a}^{b} F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x)dx$$

Hence the proof.

Definition 4.28 Integration of vector valued functions: Let $f_1, f_2, ..., f_k$ be real functions on [a, b] and let $\overline{f} = (f_1, f_2, ..., f_k)$ be a mapping of $[a, b] \rightarrow \mathbb{R}^k$. Suppose α increases monotonically on [a, b], then $\overline{f} \in \mathcal{R}(\alpha) \Leftrightarrow$ for each $f_i \in \mathcal{R}(\alpha)$, and in this case

$$\int_{a}^{b} \bar{f} d\alpha = \left(\int_{a}^{b} f_{1} d\alpha, \int_{a}^{b} f_{2} d\alpha, \dots, \int_{a}^{b} f_{k} d\alpha\right)$$

Theorem 4.29 Fundamental Theorem of calculus for vector valued functions: If \bar{F} , \bar{f} map [a, b] into \mathbb{R}^k and if $\bar{f} \in \mathcal{R}$ on [a, b] and if $\bar{F}' = \bar{f}$ then $\int_a^b \bar{f}(t) dt = \bar{F}(b) - \bar{F}(a)$. **Proof:** Let

$$f = (f_1, f_2, ..., f_k)$$
$$\bar{F} = (F_1, F_2, ..., F_k)$$
$$\bar{F}' = (F'_1, F'_2, ..., F'_k)$$

Given $\overline{F}' = \overline{f}$. $\therefore (F'_1, F'_2, ..., F'_k) = (f_1, f_2, ..., f_k) \Rightarrow F'_i = f_i \quad \forall i = 1, 2, ..., k.$ Since $\overline{f} \in \mathcal{R}$, each $f_i \in \mathcal{R}$. \therefore By fundamental theorem of calculus, for any i.

$$\int_{a}^{b} F'_{i}(t)dt = F_{i}(b) - F_{i}(a)$$

(*i.e.*)
$$\int_{a}^{b} f_{i}(t)dt = F_{i}(b) - F_{i}(a)....(1)$$

Now,

$$\int_{a}^{b} \bar{f}(t)dt = \left(\int_{a}^{b} f_{1}(t)dt, \int_{a}^{b} f_{2}(t)dt, \dots, \int_{a}^{b} f_{k}(t)dt\right) \text{ (by definition)}$$

$$(1) \Rightarrow = (F_{1}(b) - F_{1}(a), F_{2}(b) - F_{2}(a), \dots, F_{k}(b) - F_{k}(a))$$

$$= (F_{1}(b), F_{2}(b), \dots, F_{k}(b)) - (F_{1}(a), F_{2}(a), \dots, F_{k}(a))$$

$$= \bar{F}(b) - \bar{F}(a)$$

$$\therefore \int_{a}^{b} \bar{f}(t)dt = \bar{F}(b) - \bar{F}(a)$$

Note 4.30 Schwartz inequality:

$$\left|\sum_{j=1}^{n} a_j \bar{b_j}\right|^2 \le \left(\sum_{j=1}^{n} |a_j|^2\right) \left(\sum_{j=1}^{n} |b_j|^2\right) \quad (or)$$
$$\left|\sum_{j=1}^{n} a_j \bar{b_j}\right| \le \left(\sum_{j=1}^{n} |a_j|^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |b_j|^2\right)^{\frac{1}{2}}$$

Theorem 4.31 If \bar{f} maps [a, b] into \mathbb{R}^k and if $\bar{f} \in \mathcal{R}(\alpha)$ for some monotonically increasing function [a, b], then $|\bar{f}| \in \mathcal{R}(\alpha)$ and $|\int_a^b \bar{f}(t)d\alpha| \leq \int_a^b |\bar{f}(t)|d\alpha$. **Proof:**

$$\begin{split} \bar{f} &= (f_1, f_2, ..., f_k) \\ &|\bar{f}| = (f_1^2 + f_2^2 + f_3^2 + ... + f_k^2)^{1/2} \\ &\text{Since } \bar{f} \in \mathcal{R}(\alpha) \\ &\Rightarrow f_i \in \mathcal{R}(\alpha) \ \forall i = 1, 2, ..., k \\ &\Rightarrow f_i^2 \in \mathcal{R}(\alpha) \\ &\Rightarrow (f_1^2 + f_2^2 + f_3^2 + ... + f_k^2) \in \mathcal{R}(\alpha) \\ &\Rightarrow (f_1^2 + f_2^2 + f_3^2 + ... + f_k^2)^2 \in \mathcal{R}(\alpha) \text{(by Theorem 4.17, } \phi(t) = t^{1/2}) \\ &\Rightarrow |\bar{f}| \in \mathcal{R}(\alpha) \end{split}$$

To Prove:

$$\left|\int_{a}^{b} \bar{f}(t) d\alpha\right| \leq \int_{a}^{b} |\bar{f}(t)| d\alpha$$

Let $\bar{y} = \int_a^b \bar{f}(t) d\alpha$. If $\bar{y} = 0$, then the inequality is trivial (for, $\bar{y} = 0 \Rightarrow$ L.H.S=0 and $|\bar{f}| \ge 0 \Rightarrow \int_a^b |\bar{f}(t)| d\alpha \ge 0$ (i.e.) R.H.S ≥ 0) Let $\bar{y} \ne 0$

$$\begin{split} \therefore \bar{y} &= \int_{a}^{b} \bar{f} d\alpha = \left(\int_{a}^{b} f_{1} d\alpha, \int_{a}^{b} f_{2} d\alpha, ..., \int_{a}^{b} f_{k} d\alpha \right) \\ &= (y_{1}, y_{2}, ..., y_{k}) \text{ where } y_{i} = \int_{a}^{b} f_{i} d\alpha \\ \text{Now } |\bar{y}|^{2} &= y_{1}^{2} + y_{2}^{2} + ... + y_{k}^{2} \\ (i.e.) |\bar{y}|^{2} &= \sum_{i=1}^{k} y_{i}^{2} \\ &= \sum_{i=1}^{k} y_{i} y_{i} \\ &= \sum_{i=1}^{k} y_{i} (\int_{a}^{b} f_{i} d\alpha) \\ &= \int_{a}^{b} (\sum_{i=1}^{k} y_{i} f_{i}) d\alpha \\ &\leq \int_{a}^{b} \left(\sum_{i=1}^{k} y_{i} f_{i} \right)^{1/2} \left(\sum_{i=1}^{k} |f_{i}|^{2} \right)^{1/2} d\alpha \text{ (by schwartz inequality)} \\ (i.e.) |\bar{y}|^{2} &\leq \int_{a}^{b} \left(\sum_{i=1}^{k} y_{i}^{2} \right)^{1/2} \left(\sum_{i=1}^{k} f_{i}^{2} \right)^{1/2} d\alpha \\ &= \int_{a}^{b} |\bar{y}| |\bar{f}| d\alpha \\ &= |\bar{y}| \int_{a}^{b} |\bar{f}| d\alpha \\ &= |\bar{y}| \leq \int_{a}^{b} |\bar{f}| d\alpha \\ \Rightarrow |\bar{y}| &\leq \int_{a}^{b} |\bar{f}| d\alpha \\ \left| \int_{a}^{b} \bar{f} d\alpha \right| &\leq \int_{a}^{b} |\bar{f}| d\alpha \end{split}$$

Uniform Convergence:

Definition 4.32 Uniform Convergence: We say that $\{f_n\}$ of function n = 1, 2, ... converges uniformly on E to a function f is every $\epsilon > 0$ there is an integer N such that $n \ge N \Rightarrow |f_n(x) - f(x)| < \epsilon$.

Note 4.33 If $\{f_n\}$ converges pointwise on E, then there exists a function f such that for every $\epsilon > 0$ and for every x in E there is an integer N depending on ϵ and x such that $|f_n(x) - f(x)| < \epsilon \quad \forall n \ge N$. If $\{f_n\}$ converges uniformly on E, it is possible for each $\epsilon > 0$, to find one integer N which will do for all x in E. We say that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on E if the $\{s_n\}$ of partial sums defined by $s_n(x) = \sum_{i=1}^n f_i(x)$ converges uniformly on E.

Theorem 4.34 Cauchy's Criterian for Uniform Convergence: The sequence of functions $\{f_n\}$, defined on E, converges uniformly on E iff for every $\epsilon > 0$ there exists an integer N such that $n, m \ge N, x \in E \Rightarrow |f_n(x) - f_m(x)| < \epsilon$.

Proof: For the 'only if' part we assume that $\{f_n\} \to f$ uniformly. To Prove: There exists N such that $x \in E$ $n, m \geq N \Rightarrow |f_n(x) - f_m(x)| < \epsilon$. Let $\epsilon > 0$ such that $|f_n(x) - f(x)| \leq \epsilon/2$ (1) $\forall n \geq N \quad \forall x \in E$ Now, for $n, m \geq N$

$$|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)| \leq |f_n(x) - f(x)| + |f(x) - f_m(x)| \leq \epsilon/2 + \epsilon/2 \text{ (by (1))} (i.e.) |f_n(x) - f_m(x)| \leq \epsilon$$

For the 'if' part we assume that there exists N > 0 such that $n, m \ge N, x \in E \Rightarrow |f_n(x) - f_m(x)| \le \epsilon$ (2)

For fixed x, (2) implies that $\{f_n(x)\}$ is a cauchy sequence \therefore $\{f_n(x)\} \to f(x)(|f_n(x) - f(x)| \to 0)$. To Prove: $\{f_n\} \to f$ uniformly. In (2), keeping n fixed and taking limit as $m \to \infty$ we get $|f_n(x) - f(x)| \le \epsilon \quad \forall n \ge N$ $\forall x \in E. \quad \therefore \{f_n\} \to f$ uniformly.

Theorem 4.35 Suppose

$$\lim_{n \to \infty} f_n = f(x), \ (x \in E).$$

Put $M_n = \sup_{x \in E} |f_n(x) - f(x)|$, then $\{f_n\} \to f$ uniformly on E iff $M_n \to 0$ as $n \to \infty$.

Proof: For the 'only if' part, we assume that $\{f_n\} \to f$. To Prove: $M_n \to 0$ as $n \to \infty$. By hypothesis, given $\epsilon > 0$, there exists N > 0 such that $|f_n(x) - f(x)| \le \epsilon \quad \forall n \ge N \quad \forall x \in E \Rightarrow \sup x \in E |f_n(x) - f(x)| \le \epsilon$ $\forall n \ge N \Rightarrow M_n \le \epsilon \quad \forall n \ge N$ (i.e.) $M_n \to 0$ as $n \to \infty$. For the 'if' part, let $M_n \to 0$ as $n \to \infty$. Then there exists N > 0 such that $M_n \le \epsilon$ $\forall n \ge N \Rightarrow \sup_{x \in E} |f_n(x) - f(x)| \le \epsilon \quad \forall n \ge N \Rightarrow |f_n(x) - f(x)| \le \epsilon$ $\forall n \ge N, x \in E \Rightarrow \{f_n\} \to f$ uniformly.

Theorem 4.36 Weristress M test for uniform convergence: Suppose $\{f_n\}$ is a sequence of function defined on E and suppose that $|f_1(x)| \leq M_n$

 $(x \in E, n = 1, 2...)$ then $\sum f_n$ converges uniformly on E its $\sum M_n$ converges. **Proof:** Assume that $\sum M_n$ converges. To Prove: $\sum f_n$ converges uniformly. Let $\epsilon > 0$ be given. Let $\{s_n\}$ and $\{t_n\}$ be the sequences of partial sums of $\sum f_n$ and $\sum M_n$ respectively. Since $\sum M_n$ converges, $\{t_n\}$ also converges. Since any convergence sequence is a Cauchy sequence $\{t_n\}$ is also a Cauchy sequence. Then there exists N > 0 such that $|t_n - t_m| \le \epsilon \quad \forall n, m \ge N$. Let $m > n(\ge N)$

$$|t_n - t_m| = \left|\sum_{n+1}^m M_k\right| \le \epsilon....(1)$$

Now, for $x \in E$,

$$|s_n(x) - s_m(x)| = \left| \sum_{n+1}^m f_k(x) \right|$$

$$\leq \sum_{n+1}^m |f_k(x)|$$

$$\leq \sum_{n+1}^m M_k \leq \epsilon \text{ (by (1))}$$

$$\therefore |s_n(x) - s_m(x)| < \epsilon$$

 \therefore By Cauchy's criteria 4.34 the $\{s_n\}$ converges uniformly on E. $\therefore \sum f_n$ converges uniformly.

Theorem 4.37 [Uniform Convergence and Continuity] Suppose $\{f_n\}$ converges to f uniformly on a set E, in a metric space. Let x be a limit point of E and suppose that $\lim_{t\to x} f_n(t) = A_n(n = 1, 2, 3...)$, then $\{A_n\}$ converges $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$. In other words $\lim_{t\to x} \lim_{n\to\infty} f_n(t) =$ $\lim_{n\to\infty} \lim_{t\to x} f_n(t)$.

Proof: Let $\epsilon > 0$ be given. Since $\{f_n\}$ converges to f uniformly on E, by Theorem 4.34, there exists an integer N > 0 such that $|f_n(t) - f_m(t)| \le \epsilon$ $\forall n, m \ge N, t \in E$ (1)

Letting $t \to x$ in (1) we get $|A_n - A_m| \le \epsilon \quad \forall n, m \ge N(\because \lim_{t\to x} = A_n)$ (i.e.) $\{A_n\}$ is a Cauchy sequence of real numbers. Since \mathbb{R} is complete, $\{A_n\}$ converges to some A(in $\mathbb{R})$ (i.e.) $\{A_n\} \to A$. \therefore there exists $N_1 > 0$ such that $|A_n - A| \le \epsilon/3$, $\forall n \ge N_1$ (2) Now,

$$|f(t) - A| = |f(t) - f_n(t)| + (f_n(t) - A_n) + |(A_n - A)|$$

$$\leq |f(t) - f_n(t)| + |f_n(t) - A_n| + (A_n - A)|.....(3)$$

Since $\{f_n\} \to f$ uniformly, there exists $N_2 > 0$ such that $|f_n(t) - f(t)| \le \epsilon/3$ $\forall n \ge N_2, t \in E$ (4) Since x is a limit point of E and $\therefore \lim_{t\to x} f_n(t) = A_n$, there exists a neighbourhood V of x such that $|f_n(t) - A_n| \le \epsilon/3 \quad \forall t \in V \cap E$ (5) Let $N_3 = max\{N_1, N_2\}$. Now using (2),(4) and (5) in (3) we get

$$|f(t) - A| \le \epsilon/3 + \epsilon/3 + \epsilon/3 \quad \forall n \ge N_3 \quad \forall t \in V \cap E.$$

(*i.e.*) $|f(t) - A| \le \epsilon$
(*i.e.*) $\lim_{t \to x} f(t) = A$ (or)
 $\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} A_n$
 $= \lim_{n \to \infty} \lim_{t \to x} f_n(t))$
 $\therefore \lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$

Theorem 4.38 If $\{f_n\}$ is a sequence of continuous functions on E, and if $\{f_n\}$ converges to f uniformly on E then f is continuous on E. **Proof:** Enough To Prove: $\lim_{t\to x} f(t) = f(x)$

$$\lim_{t \to x} f(t) = \lim_{t \to x} \lim_{n \to \infty} f_n(t)) \ (\because f_n \to f \quad \text{uniformly})$$
$$\lim_{t \to x} f(t) = \lim_{n \to \infty} (\lim_{t \to x} f_n(t)) \ (\text{by Theorem 4.37})$$
$$= \lim_{n \to \infty} f_n(x) \ (\because f_n \text{ is continuous})$$
$$= f(x) \ (\because f_n \to f \text{ uniformly})$$

Remark 4.39 The converse of the above theorem need not be true. (i.e.) a sequence of continuous function may converse to a continuous function, although the convergence is not uniform.

Example 4.40 $f_n(x) = n^2 x (1 - x^2)^n$, $0 \le x \le 1$, n = 1, 2, 3, ... Clearly, each f_n is continuous. Also f is continuous. But the convergence is not uniform. By Theorem 4.35, for let

$$M_n = \sup_{x \in [0,1]} |f_n(x) - f(x)|$$

= $\sup_{x \in [0,1]} |n^2 x (1 - x^2)^n - 0|$
= $n^2 \sup_{x \in [0,1]} \{x (1 - x^2)^n\}$
 $\Rightarrow 0 \text{ as } n \to \infty.$

By Theorem 4.35, the convergence is not uniform.

Theorem 4.41 [Dini's Theorem] Suppose K is compact and (a) $\{f_n\}$ is a sequence of continuous functions on K. (b) $\{f_n\}$ converges pointwise to a continuous functions f on K. (c) $f_n(x) \ge f_{n+1}(x) \quad \forall x \in K, \ n = 1, 2, 3...$ then $f_n \to f$ uniformly on K.

Proof: Given K is compact. Let $g_n = f_n - f$. Since each f_n is continuous and f is continuous, g_n is continuous for all n. Since $\{f_n\}$ converges pointwise to f, $\{g_n\}$ converges pointwise to 0. Since $f_n(x) \ge f_{n+1}(x)$ $\forall x \in K, n = 1, 2..., f_n(x) - f(x) \ge f_{n+1}(x) - f(x)$. (i.e.) $g_n(x) \ge g_{n+1}(x)$ $\forall x, n = 1, 2...$ (i.e.) $\{g_n\}$ is also a monotonic decreasing sequence. To prove that $\{f_n\}$ converges to f uniformly. It is enough to prove that $\{g_n\}$ converges to 0 uniformly. Let $\epsilon > 0$ be given. For each n, let $K_n = \{x \in K | g_n(x) \ge \epsilon\}$. Now,

$$K_n = \{x \in K | g_n(x) \ge \in [\epsilon, \infty)\}$$
$$= \{x \in K | x \in g_n^{-1}[\epsilon, \infty)\}$$
$$= g_n^{-1}[\epsilon, \infty).$$

Since $[\epsilon, \infty)$ is closed in R and g_n is continuous, $g_n^{-1}[\epsilon, \infty)$ is closed in K. (i.e.) K_n is a closed subspace of the compact space $K_n \therefore K_n$ is compact (\because every closed subspace of a compact space is compact). Claim: $K_n \supset K_{n+1}$, n = 1, 2, 3... Let $x \in K_{n+1} \Rightarrow g_{n+1}(x) \ge \epsilon$. But $g_n(x) \ge g_{n+1}(x)$ (by (1)). $\therefore g_n(x) \ge g_{n+1}(x) \ge \epsilon \Rightarrow g_n(x) \ge \epsilon \Rightarrow x \in K_n \therefore K_{n+1} \subset K_n$. Fix $x \in K$. Since $\{g_n\}$ converges pointwise to 0. $\{g_n(x)\} \to 0$. Then there exists N(x) > 0 such that $|g_n(x) - 0| < \epsilon \quad \forall n \ge N(x) \Rightarrow g_n(x) < \epsilon \quad \forall n \ge N(x) \Rightarrow$ $x \notin K_n \quad \forall n \ge N(x) \Rightarrow x \notin \bigcap_{n=1}^{\infty} K_n$. Since x is arbitrary, $\bigcap_{n=1}^{\infty} K_n = \phi \Rightarrow$ $K_N = \phi$ for some N. $\therefore g_N(x) < \epsilon \quad \forall x \in K$. But

$$0 \le g_n(x) \le g_N(x) < \epsilon \ \forall x \in K, \ \forall n \ge N$$
$$g_n(x) < \epsilon \ \forall x \in K, \ \forall n \ge N$$
$$(i.e.) \ |g_n(x) - 0| < \epsilon \ \forall x \in K, \ \forall n \ge N$$

Hence $\{g_n\} \to 0$ uniformly.

Note 4.42 Compactness is really needed in the above theorem.

Example 4.43 $f_n(x) = \frac{1}{nx+1}$, 0 < x < 1, n = 1, 2, 3... $\{f_n\} \to f$ pointwise where $f(x) = 0 \forall x \in (0, 1)$ and (0, 1) is not compact. Clearly, each f_n is continuous. Also f is continuous. Now,

$$\begin{aligned} n+1 &> n\\ \Rightarrow (n+1)x > nx\\ \Rightarrow (n+1)x + 1 > nx + 1\\ \Rightarrow \frac{1}{(n+1)x+1} < \frac{1}{nx+1}\\ \Rightarrow f_{n+1}(x) < f_n(x) \end{aligned}$$

 $\Rightarrow \{f_n\}$ is a decreasing sequence. But $\{f_n\} \rightarrow f$ uniformly. For, if $\{f_n\} \rightarrow f$ uniformly then, given $\epsilon > 0$, there exists N > 0 such that

$$\begin{aligned} |f_n(x) - f(x)| &\leq \epsilon \ \forall n \geq N, \ \forall x \in (0,1) \\ (i.e.) \ \left| \frac{1}{nx+1} - 0 \right| &\leq \epsilon \ \forall x \in (0,1) \\ \left| \frac{1}{nx+1} \right| &\leq \epsilon \ \forall x \in (0,1) \end{aligned}$$
$$Put \ x = \frac{1}{n}. \ Then \ \frac{1}{2} \leq \epsilon \\ \Rightarrow \Leftarrow \end{aligned}$$

 \therefore The convergence is not uniform.

Definition 4.44 If X is a metric space $\mathscr{C}(x)$ denotes the set of all complex valued continuous bounded functions with domain X. $\mathscr{C}(X) = \{f/f : X \to c, f \text{ is continuous and bounded}\}$. If X is compact, $\mathscr{C}(X) = \{f/f : X \to c, f \text{ is continuous}\}$ (\because any continuous function on a compact space is bounded). For any f in $\mathscr{C}(f)$, $\sup ||f|| = \sup_{x \in X} |f(x)|$, since f is bounded $||f|| < \infty$.

Result 4.45 $\mathscr{C}(X)$ is a metric space. Given $f, g \in \mathscr{C}(X)$ define

$$\begin{aligned} (i) \ d(f,g) &= \|f - g\| \\ &= \sup_{x \in E} |f(x) - g(x)| \\ &\geq 0 \\ \therefore \ d(f,g) &\geq 0 \\ (ii) \ d(f,g) &= \sup_{x \in E} |f(x) - g(x)| \\ &= \sup_{x \in E} |g(x) - f(x)| \\ &= \|g - f\| \\ &= d(f,g) \end{aligned}$$
$$(iii) \ d(f,g) &= 0 \Leftrightarrow \|f - g\| = 0 \\ &\Leftrightarrow \sup_{x \in E} |f(x) - g(x)| \\ &\Leftrightarrow |f(x) - g(x)| = 0 \forall x \in E \\ &\Leftrightarrow f(x) = g(x) \\ &\Leftrightarrow f = g \end{aligned}$$

$$\begin{array}{l} (iv) \ d(f,g) = \|f - g\| \\ &= \sup_{x \in E} |f(x) - g(x)| \\ &= \sup_{x \in E} |(f(x) - h(x)) + (h(x) - g(x))| \\ &\leq \sup_{x \in E} |(f(x) - h(x))| + |(h(x) - g(x))| \\ &\leq \sup_{x \in E} |(f(x) - h(x))| + \sup_{x \in E} |(f(x) - g(x))| \\ &= \|f - h\| + \|h - g\| \\ &= d(f, h) + d(h, g) \\ (i.e.) \ d(f,g) \leq d(f, h) + d(h, g) \end{array}$$

 $\therefore (\mathscr{C}(X), d)$ is a metric space.

Result 4.46 (Analogue of Theorem 4.35) A sequence $\{f_n\} \to f$ with respect to the metric space $\mathscr{C}(X)$ iff $\{f_n\} \to f$ uniformly on X. **Proof: 'only if' part:**

Assume that $\{f_n\} \to f$ in $\mathscr{C}(X)$. $||f_n - f|| \to 0$ as $n \to \infty$ (i.e.) $\sup_{x \in E} |f_n(x) - f(x)| \to 0$ as $n \to \infty$ (i.e.) $M_n \to 0$ as $n \to \infty$ (Theorem 4.35). $\{f_n\} \to f$ uniformly (by Theorem 4.35) 'if' part:

Suppose $\{f_n\} \to f$ uniformly. Then $M_n \to 0$ as $n \to \infty$ (Theorem 4.35) (i.e.) $\sup x \in E|f_n(x) - f(x)| \to 0$ as $n \to \infty$ (i.e.) $||f_n - f|| \to 0$ as $n \to \infty$. $\therefore \{f_n\} \to f$ in $\mathscr{C}(X)$

Note 4.47 (i) Closed subsets of $\mathscr{C}(X)$ are called uniformly closed subsets. (ii) If $A \subset \mathscr{C}(X)$ then the closure of A is called the uniform closure of A.

Theorem 4.48 $\mathscr{C}(X)$ is a complete metric space.

Proof: Let $\{f_n\}$ be a Cauchy sequence in $\mathscr{C}(X)$. Let $\epsilon > 0$ be given. Then there exists N > 0 such that $||f_n - f_m|| < \epsilon \quad \forall n, m \ge N$ (1)

(i.e.) $\sup_{x\in E} |f_n(x) - f_m(x)| \leq \epsilon \quad \forall n, m \geq N. \Rightarrow |f_n(x) - f_m(x)| \leq \epsilon \\ \forall n, m \geq N, x \in X.$ By Theorem 4.34, guarantees that $\{f_n\}$ converges uniformly, say f. (i.e.) $\lim_{n\to\infty} f_n(x) = f(x), x \in X.$ Claim: $f \in \mathscr{C}(X)$. Since each f_n is continuous and $\{f_n\} \to f$ uniformly (Theorem 4.38). Theorem 4.38 demands that f is also continuous. Again, since $\{f_n\} \to f$ uniformly, there exists $N_1 > 0$ such that $|f_n(x) - f(x)| < 1 \ \forall n \geq N_1, x \in X.$ In particular, $|f_{N_1}(x) - f(x)| < 1...... (2) \ \forall x \in X$ Since $f_{N_1}(x) \in \mathscr{C}(X), |f_{N_1}(x)| \leq K...... (3) \ \forall x \in X$ Now,

$$|f(x)| = |(f(x) - f_{N_1}(x)) + f_{N_1}(x)|$$

$$|f(x)| \le |f(x) - f_{N_1}(x)| + |f_{N_1}(x)|$$

$$< 1 + K \text{ (by (2) and (3)) } \forall x \in X$$

(*i.e.*) $|f(x)| < 1 + K \ \forall x \in K.$

 $\therefore f$ is bounded. Hence $f \in \mathscr{C}(X)$. It remains to prove that $\{f_n\} \to f$ in $\mathscr{C}(X)$. For, $\{f_n\} \to f$ uniformly $\Rightarrow M_n \to 0 \Rightarrow \sup_{x \in X} |f_n(x) - f(x)| \to 0$ as $n \to \infty$ (by Theorem 4.35) $\Rightarrow ||f_n - f|| \to 0$ as $n \to \infty$. So $\{f_n\} \to f$ in the metric space $\mathscr{C}(X)$. $\therefore \mathscr{C}(X)$ is a complete metric space.

Uniform Convergence and Integration

Theorem 4.49 Let α be monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b] for n = 1, 2, 3... and suppose $f_n \to f$ uniformly on [a, b] then $f_n \in \mathcal{R}(\alpha)$ on [a, b] and $\int_a^b f d\alpha = \lim_{n\to\infty} \int_a^b f d\alpha$. **Proof:** Let $\epsilon_n = \sup_{a \le x \le b} |f(x) - f_n(x)|$ (1) (Theorem 4.35)

$$\begin{array}{l} \therefore |f - f_n| \leq \epsilon_n \ \forall n = 1, 2, 3... \\ -\epsilon \leq f - f_n \leq \epsilon_n \\ \Rightarrow f_n - \epsilon_n \leq f \leq f_n + \epsilon_n \\ \Rightarrow \int_a^b (f_n - \epsilon_n) d\alpha \leq \int_a^b f d\alpha \leq \int_a^{\bar{b}} f d\alpha \leq \int_a^b (f_n + \epsilon_n) d\alpha.....(2) \\ \Rightarrow \int_a^b f_n d\alpha - \int_a^b \epsilon_n d\alpha \leq \int_a^b f d\alpha \leq \int_a^{\bar{b}} f d\alpha \leq \int_a^b f_n d\alpha + \int_a^b \epsilon_n d\alpha \\ \Rightarrow \int_a^{\bar{b}} f d\alpha - \int_{\underline{a}}^b f d\alpha \leq (\int_a^b f_n d\alpha + \int_a^b \epsilon_n d\alpha) - (\int_a^b f_n d\alpha - \int_a^b \epsilon_n d\alpha) \\ = 2 \int_a^b \epsilon_n d\alpha \\ = 2 \epsilon_n \int_a^b d\alpha \\ = 2 \epsilon_n [\alpha(b) - \alpha(a)] \\ (i.e.) \int_a^{\bar{b}} f d\alpha - \int_{\underline{a}}^b f d\alpha \leq 2 \epsilon_n (\alpha(b) - \alpha(a)) \\ \rightarrow 0 \ (\because \epsilon_n \to 0 \ \text{as} \ f_n \to f \ \text{uniformly by theorem} \ 4.35) \\ \therefore \int_a^{\bar{b}} f d\alpha = \int_{\underline{a}}^b f d\alpha \end{aligned}$$

Hence $f \in \mathcal{R}(\alpha)$. II part: To prove:

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha$$

Now, $(2) \Rightarrow$

$$\begin{split} \int_{a}^{b} (f_{n} - \epsilon_{n}) d\alpha &\leq \int_{a}^{b} f d\alpha \leq \int_{a}^{b} (f_{n} + \epsilon_{n}) d\alpha \\ \int_{a}^{b} f_{n} d\alpha - \int_{a}^{b} \epsilon_{n} d\alpha \leq \int_{a}^{b} f d\alpha \leq \int_{a}^{b} f_{n} d\alpha + \int_{a}^{b} \epsilon_{n} d\alpha \\ \Rightarrow \int_{a}^{b} f_{n} d\alpha - \epsilon_{n} \int_{a}^{b} d\alpha \leq \int_{a}^{b} f d\alpha \leq \int_{a}^{b} f_{n} d\alpha + \epsilon_{n} \int_{a}^{b} d\alpha \\ \Rightarrow -\epsilon_{n} \int_{a}^{b} d\alpha \leq \int_{a}^{b} f d\alpha - \int_{a}^{b} f_{n} d\alpha \leq \epsilon_{n} \int_{a}^{b} d\alpha \\ \Rightarrow \left| \int_{a}^{b} f d\alpha - \int_{a}^{b} f_{n} d\alpha \right| \leq \epsilon_{n} \int_{a}^{b} d\alpha \\ = \epsilon_{n} (\alpha(b) - \alpha(a)) \\ \to 0 \text{ as } n \to \infty \ (\because \epsilon_{n} \to 0) \\ \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha = \int_{a}^{b} f d\alpha. \end{split}$$

Corollary 4.50 If $f_n \in \mathcal{R}(\alpha)$ on [a, b] and if $f(x) = \sum_{n=1}^{\infty} f_n(x) (a \le x \le b)$, the series converges uniformly on [a, b], then $\int_a^b f d\alpha = \sum_{n=1}^{\infty} \int_a^b f_n d\alpha$. (the series may be integrated term by term)

Proof: Given $\sum f_n = f$ (uniformly). Let $s_n = \sum_{k=1}^n f_k$. By hypothesis $\{s_n\} \to f$ uniformly. By Theorem 4.49,

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} s_{n} d\alpha$$
$$= \lim_{n \to \infty} \int_{a}^{b} \left(\sum_{k=1}^{n} f_{k} \right) d\alpha$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\int_{a}^{b} f_{k} d\alpha \right)$$
$$= \sum_{k=1}^{\infty} \int_{a}^{b} f_{k} d\alpha$$
5. UNIT V

Uniform Convergence and Differentiation

Theorem 5.1 Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] such that $\{f_n(x_0)\}$ converges for some point x_0 in [a,b]. If $\{f'_n\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly on [a,b] to a function f and $f'(x) = \lim_{n\to\infty} f'_n(x), a \le x \le b$.

Proof: Since $\{f_n(x_0)\}$ is convergent, it is a Cauchy sequence. Also $\{f'_n\}$ converges uniformly. Therefore, there exists an integer N > 0 such that

$$|f_n(x_0) - f_m(x_0)| \le \epsilon/2....(1) \ \forall n, m \ge N |f'_n(x) - f'_m(x)| \le \frac{\epsilon}{2(b-a)}...(2) \ \forall n, m \ge N, \ \forall x \in [a, b]$$

By applying mean value theorem to $f_n - f_m$ in [t, x],

$$(f_n - f_m)(x) - (f_n - f_m)(t) = (x - t)(f'_n - f'_m)(y)$$

where $y \in (a, b)$, for $t, x \in [a, b]$
$$f_n(x) - f_m(x) - f_n(t) + f_m(t) = (x - t)(f'_n(y) - f'_m(y))$$

$$|f_n(x) - f_m(x) - f_n(t) + f_m(t)| = |(x - t)(f'_n(y) - f'_m(y))|$$

$$= |(x - t)||f'_n(y) - f'_m(y)|$$

$$\leq \frac{|x - t|\epsilon}{2(b - a)} \dots (3) \ (by(2))$$

$$\leq \frac{(b - a)\epsilon}{2(b - a)} \ (\because |x - t| \le b - a)$$

$$= \epsilon/2$$

$$|f_n(x) - f_m(x) - f_n(t) + f_m(t)| \le \epsilon/2 \dots (4) \ \forall x, t \in [a, b], \ \forall n, m \ge N.$$

Now,

$$\begin{aligned} |f_n(x) - f_m(x)| &= |(f_n(x) - f_m(x)) - (f_n(x_0) - f_n(x_0)) + (f_m(x_0) - f_m(x_0))| \\ &\leq |f_n(x) - f_m(x) - f_n(x_0) + f_m(x_0)| + |(f_n(x_0) - f_m(x_0))| \\ &\leq \epsilon/2 + \epsilon/2 \text{ (by (4) and (1))} \\ |f_n(x) - f_m(x)| &\leq \epsilon \quad \forall n, m \geq N, \ \forall x \in [a, b] \end{aligned}$$

Cauchy's criteria guarantees that $\{f_n\}$ converges uniformly, say f. (i.e.) $\lim_{n\to\infty} f_n = f$. To Prove: $f'(x) = \lim_{n\to\infty} f'_n(x)$. Fix $x \in [a, b]$, define

$$\begin{split} \phi_n(t) &= \frac{f_n(t) - f_n(x)}{t - x} \text{ and } \phi(t) = \frac{f(t) - f(x)}{t - x}. \text{ Now,} \\ \lim_{t \to x} \phi_n(t) &= \lim_{t \to x} \frac{f_n(t) - f_n(x)}{t - x} \\ &= f'_n(x).....(5) \\ \lim_{t \to x} \phi(t) &= \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \\ &= f'(x).....(6) \\ \text{Also, } |\phi_n(t) - \phi_m(t)| &= \left| \frac{f_n(t) - f_n(x)}{t - x} - \frac{f_m(t) - f_m(x)}{t - x} \right| \\ &\leq \frac{1}{|t - x|} |f_n(t) - f_n(x) - f_m(t) + f_m(x)| \\ &\leq \frac{1}{|t - x|} \cdot \frac{|t - x|\epsilon}{2(b - a)} \text{ (by (3))} \\ &= \frac{\epsilon}{2(b - a)} \\ |\phi_n(t) - \phi_m(t)| &\leq \frac{\epsilon}{2(b - a)} \end{split}$$

Cauchy's criteria for uniform convergence demands that $\{\phi_n\}$ converges uniformly. Now,

$$\lim_{n \to \infty} \phi_n(t) = \lim_{n \to \infty} \frac{f_n(t) - f_n(x)}{t - x}$$
$$= \frac{f(t) - f(x)}{t - x}$$
$$= \phi(t)$$
$$(i.e.)\phi(t) = \lim_{n \to \infty} \phi_n(t).....(7)$$
Finally, $f'(x) = \lim_{t \to x} \phi(t)$ (by (6))
$$= \lim_{t \to x} (\lim_{n \to \infty} \phi_n(t))$$
 (by (7))
$$= \lim_{n \to \infty} \lim_{t \to x} \phi_n(t)$$
 ($\because \ \{\phi_n\} \to \phi$ uniformly and by Theorem 4.37)
$$= \lim_{n \to \infty} f'_n(x)$$
 (by (5))

Therefore $f'(x) = \lim_{n \to \infty} f'_n(x)$.

Theorem 5.2 There exists a real continuous function on the real line which is no where differentiable.

Proof: Let $\phi(x) = |x|, -1 \le x \le 1$ and $\phi(x+2) = \phi(x) \quad \forall x \in R$. Define $f(x) = \sum_{n=0}^{\infty} (3/4)^n \phi(4^n x), x \in R$. We observe that,

$$\begin{aligned} |\phi(s) - \phi(t)| &\le |s - t|.....(1) \ \forall s, t \in R \\ |(3/4)^n \phi(4^n x)| &\le (3/4)^n, \end{aligned}$$

 $\sum_{n=0}^{\infty} (3/4)^n \text{ is a geometric series with common ratio } \frac{3}{4} < 1 \text{ and hence it converges to } \frac{1}{1-3/4} = 4.$ Now, Weierstrass M test for uniform convergence demands that $\sum (3/4)^n \phi(4^n x)$ converges uniformly to f. Clearly f(x) is continuous. Fix a real number x and a positive integer m define $\delta_m = \pm \frac{1}{2}(4-m)$ where the sign is chosen such that no integer lies between $4^m(x)$ and $4^m(x+\delta_m)$. This is possible since $|4^m\delta_m| = 1/2$. Let $\gamma_n = \frac{\phi(4^m(x+\delta_m))-\phi(4^mx)}{\delta_m}$. Now,

$$4^{n}\delta_{m} = \pm \frac{1}{2}4^{n-m} = \begin{cases} \text{an integer} & n \ge m\\ \text{not an integer} & 0 \le n \le m \end{cases}$$

when n > m,

$$\gamma_n = \frac{\phi(4^n(x+\delta_m)) - \phi(4^n x)}{\delta_m}$$
$$\gamma_n = \frac{\phi(4^m x + 4^n \delta_m) - \phi(4^n x)}{\delta_m}$$
$$\gamma_n = \frac{\phi(4^n x) - \phi(4^n x)}{\delta_m} (\because 4^n \delta_m \text{ is even})$$
$$= 0$$
$$(i.e.)\gamma_n = 0 \ \forall n \ge m.....(2)$$

when n < m,

$$|\gamma_n| = \left| \frac{\phi(4^n(x+\delta_m)) - \phi(4^n x)}{\delta_m} \right|$$
$$\leq \frac{|4^n(x+\delta_m) - 4^n x|}{|\delta_m|}$$
$$|\gamma_n| \leq \left| \frac{4^n \delta_m}{\delta_m} \right|$$
$$(or)|\gamma_n| \leq 4^n, \forall n < m.....(3)$$

when n = m

$$\begin{aligned} |\gamma_n| &= \phi |\gamma_m| \\ &= \left| \frac{\phi(4^m(x+\delta_m)) - \phi(4^m x)}{\delta_m} \right| \\ &= \left| \frac{4^m \delta_m}{\delta_m} \right| \\ |\gamma_n| &= 4^m \ n = m.....(4) \end{aligned}$$

Now,

$$\begin{aligned} \left| \frac{f(x+\delta_m) - f(x)}{\delta_m} \right| &= \left| \frac{\sum_{n=0}^{\infty} (3/4)^n \phi(4^n(x+\delta_m)) - \sum_{n=0}^{\infty} (3/4)^n \phi(4^n x)}{\delta_m} \right| \\ &= \left| \sum_{n=0}^{\infty} (3/4)^n \frac{\{\phi(4^m(x+\delta_m)) - \phi(4^m x)\}\}}{\delta_m} \right| \\ &= \left| \sum_{n=0}^{\infty} (3/4)^n \gamma_n \right| \quad (by (2)) \\ &\geq |(3/4)^m \gamma_m| - \left| \sum_{n=0}^{m-1} (3/4)^n \gamma_n \right| \\ &\geq (3/4)^m |\gamma_m| - \sum_{n=0}^{m-1} (3/4)^n |\gamma_n| \\ &\geq (3/4)^m 4^m - \sum_{n=0}^{m-1} (3/4)^n 4^n \ (by (4) \text{ and } (3)) \\ &= 3^m - \sum_{n=0}^{m-1} 3^n \\ &= 3^m - \frac{3^m - 1}{3 - 1} \\ &= \frac{3^m + 1}{2} \\ \left| \frac{f(x+\delta_m) - f(x)}{\delta_m} \right| \geq \frac{3^m + 1}{2} \end{aligned}$$

As $m \to \infty, \delta_m \to 0$ and $\frac{3^m+1}{2} \to \infty$. It follows that f'(x) does not exists.

Equicontinuous family of functions:

Definition 5.3 Pointwise bounded: Let f_n be a sequence of functions defined on E. We say $\{f_n\}$ is pointwise bounded if $\{f_n(x)\}$ is bounded for every $x \in E$. (i.e.) there exists a finite valued function ϕ defined on E such that $|f_n(x)| \leq \phi(x)$, $\forall x \in E, n = 1, 2, 3, ...$

Definition 5.4 Uniform boundedness: $\{f_n\}$ is said to be uniformly bounded on E if there exists a number M such that $|f_n(x)| \leq M$, $\forall x \in E, n = 1, 2, 3, ...$

Example 5.5 Even if $\{f_n\}$ is a uniformly bounded sequence of continuous function on a compact set E, there need not exists a subsequence which

converges pointwise on *E*. Solution:

$$f_n(x) = \sin nx, 0 \le x \le 2\pi, n = 1, 2, 3...,$$

 $|f_n(x)| = |\sin nx| \le 1$

 \therefore f_n is uniformly bounded. To Prove: $[0, 2\pi]$ is compact. Claim: This does not have any convergent subsequence. Suppose it has any convergent subsequence $\{\sin n_k x\},\$

$$\lim_{k \to \infty} \sin n_k x = A$$
$$\lim_{k \to \infty} (\sin n_k x - \sin n_{k+1} x) = 0$$
$$\lim_{n \to \infty} (\sin n_k x - \sin n_{k+1} x)^2 = 0$$
$$\int_0^{2\pi} \lim_{k \to \infty} (\sin n_k x - \sin n_{k+1} x)^2 dx = \int_0^{2\pi} 0 dx$$
$$\int_0^{2\pi} \lim_{k \to \infty} (\sin n_k x - \sin n_{k+1} x)^2 dx = 0.....(1)$$

But,

$$\begin{split} \int_{0}^{2\pi} \lim_{k \to \infty} (\sin n_{k}x - \sin n_{k+1}x)^{2} dx \\ &= \lim_{k \to \infty} \int_{0}^{2\pi} (\sin n_{k}x - \sin n_{k+1}x)^{2} dx \\ &= \lim_{k \to \infty} \int_{0}^{2\pi} (\sin^{2} n_{k}x + \sin^{2} n_{k+1}x - 2\sin n_{k}x \sin n_{k+1}x) dx \\ &= \lim_{k \to \infty} \left[\int_{0}^{2\pi} \sin^{2} n_{k}x dx + \int_{0}^{2\pi} \sin^{2} n_{k+1}x dx \right] \\ &- \lim_{k \to \infty} \left[2 \int_{0}^{2\pi} \sin n_{k}x \sin n_{k+1}x dx \right] \\ &= \lim_{k \to \infty} \left[\int_{0}^{2\pi} \frac{1 - \cos 2n_{k}x}{2} dx + \int_{0}^{2\pi} \frac{1 - \cos 2n_{k+1}x}{2} dx \right] \\ &+ \lim_{k \to \infty} \left[\int_{0}^{2\pi} (\cos(n_{k} + n_{k+1})x - \cos(n_{k} - n_{k+1})x) dx \right] \\ &= \lim_{k \to \infty} \left[\left[\frac{x}{2} - \frac{\sin 2n_{k}x}{4n_{k}} \right]_{0}^{2\pi} + \left[\frac{x}{2} - \frac{\sin 2n_{k+1}x}{4n_{k+1}} \right]_{0}^{2\pi} \right] \\ &+ \lim_{k \to \infty} \left[\left[\frac{\sin(n_{k} + n_{k+1})x}{(n_{k} + n_{k+1})} - \frac{\sin(n_{k} - n_{k+1})x}{(n_{k} - n_{k+1})} \right]_{0}^{2\pi} \right] \\ &= \lim_{k \to \infty} \left[\left[\frac{2\pi}{2} - 0 \right] + \left[\frac{2\pi}{2} - 0 \right] - [0] + [0 - 0] \right] \\ &= \lim_{k \to \infty} 2\pi \\ &= 2\pi \dots (2) \\ &\Rightarrow \ll to(1) \end{split}$$

 \therefore There does not exists a subsequence which converges pointwise on E.

Example 5.6 A uniformly bounded convergent sequence of a function, even if defined on a compact set, need not contain a uniformly convergent subsequence,

$$f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}, \ 0 \le x \le 1, n = 1, 2, 3....$$

Solution: Clearly [0, 1] is compact.

$$|f_n(x)| = \left| \frac{x^2}{x^2 + (1 - nx)^2} \right| \le 1$$
$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x^2}{x^2 + (1 - nx)^2}, 0 \le x \le 1$$
$$= 0.....(1)$$
But, $f_n\left(\frac{1}{n}\right) = \frac{\frac{1}{n^2}}{\frac{1}{n^2} + (1 - n\frac{1}{n})^2}$
$$= \frac{\frac{1}{n^2}}{\frac{1}{n^2} + 0}$$
$$= 1....(2)$$

Therefore f_{n_k} has no subsequence of $\{f_n\}$ which converges uniformly, if there is a subsequence $\{f_{n_k}\}$ converging uniformly. Then,

$$\begin{split} |f_{n_k}(x) - 0| &< \epsilon, \ \forall n_k \ge N. \\ \Rightarrow \left| f_{n_k} \left(\frac{1}{n_k} \right) - 0 \right| &< \epsilon \ when \ x = \frac{1}{n_k} \\ \Rightarrow |1 - 0| &< \epsilon \\ \Rightarrow 1 &< \epsilon \\ \Rightarrow \leftarrow . \end{split}$$

Definition 5.7 *Equicontinuity:* A family \mathscr{F} of complex functions f defined on a set E in a metric space X is said to be equicontinuous on E if for every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $d(x, y) < \delta$, ' $x, y \in E$, $f \in \mathscr{F}$.

Note 5.8 (i) Every member of an equicontinuous family is uniformly continuous.

(ii) Example 5.6 is not equicontinuous.

Proof: Let $x = \frac{1}{n}$ and $y = \frac{1}{n+1}$.

$$\begin{aligned} d(x,y) &= \left| \frac{1}{n} - \frac{1}{n+1} \right| \\ &= \left| \frac{n+1-n}{n(n+1)} \right| \\ &= \left| \frac{1}{n(n+1)} \right| \\ &< \delta \end{aligned}$$

But $|f_n(x) - f_n(y)| &= \left| \frac{\frac{n^2}{1}}{\frac{1}{n^2}} + (1 - n\frac{1}{n})^2 - \frac{\frac{1}{(n+1)^2}}{\frac{1}{(n+1)^2}} + (1 - n\frac{1}{n+1})^2 \right| \\ &= \left| 1 - \frac{\frac{1}{(n+1)^2}}{\frac{1}{(n+1)^2}} + (1 - \frac{n}{n+1})^2 \right| \\ &= \left| 1 - \frac{\frac{1}{(n+1)^2}}{\frac{1}{(n+1)^2}} + (\frac{1}{n+1})^2 \right| \\ &= \left| 1 - \frac{\frac{1}{(n+1)^2}}{\frac{1}{(n+1)^2}} + (\frac{1}{n+1})^2 \right| \\ &= \left| 1 - \frac{\frac{1}{(n+1)^2}}{\frac{1}{(n+1)^2}} \right| \\ &= \left| 1 - \frac{\frac{1}{2}}{\frac{1}{2}} \right| \\ &= \left| 1 - \frac{1}{2} \right| = \frac{1}{2} \end{aligned}$
$$|f_n(x) - f_n(y)| < \epsilon \Rightarrow \frac{1}{2} < \epsilon \\ &\Rightarrow \leftarrow (\because \epsilon \text{ is arbitrarily small}) \end{aligned}$$

 \therefore The family is not equicontinuous.

Theorem 5.9 If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every x in E.

Proof: Since E is countable, we can arrange the elements of E in a sequence $\{x_i\}, i = 1, 2, ..., \infty$. As $\{f_n\}$ is pointwise bounded $\{f_{n_k}(x_1)\}$ is also a bounded sequence. \therefore This sequence has a convergent subsequence. (i.e.) There exists a subsequence $\{f_{1k}\}$ of $\{f_n\}$ such that $\{f_{1k}(x_1)\}$ converges as $k \to \infty$. Let $S_1 : f_{11} \ f_{12} \ f_{13}$ Now, $\{f_{1k}(x_1)\}$ is bounded. \therefore There exists a subsequence $\{f_{2k}\}$ of $\{f_n\}$ such that $\{f_{2k}(x_2)\}$ converges. Let $S_2 : f_{21} \ f_{22} \ f_{23}$ Similarly we get $S_3, S_3 : f_{31} \ f_{32} \ f_{33}$ The sequences S_n 's have the following properties.

(a) S_n is a subsequence of S_{n-1}

(b) $\{f_{nk}(x_n)\}$ converges as $k \to \infty$

(c) The functions f_n 's appear in the same order in all the subsequences. Consider the diagonal sequence, $S: f_{11} \quad f_{22} \quad f_{33}$, by condition (a) S is a subsequence of S_n for n = 1, 2, 3... except possibly its first n - 1 terms and (b) $\Rightarrow \{f_{nn}(x_i)\}$ converges as $n \to \infty$ for every x_i in E.

Theorem 5.10 If K is a compact metric space and $f_n \in \mathscr{C}(K)$, n = 1, 2...and if $\{f_n\}$ converges uniformly on K, then $\{f_n\}$ is equicontinuous on K. **Proof:** Let $\epsilon > 0$ be given. Since $\{f_n\}$ converges uniformly on $K, \{f_n\}$ converges to some f in $\mathscr{C}(K)$. (i.e.) There exists N > 0 such that

$$\begin{split} \|f_n - f\| &< \epsilon/2 \ \forall n \ge N\\ Now, \|f_n - f_N\| = \|(f_n - f) + (f - f_N)\|\\ &\leq \|(f_n - f)\| + \|(f - f_N)\|\\ &< \epsilon/2 + \epsilon/2\\ &< \epsilon \ \forall n \ge N\\ (i.e.) \ \|(f_n - f_N)\| &< \epsilon \ \forall n \ge N\\ (i.e.) \ \sup_{x \in k} |(f_n(x) - f_N(x))| &< \epsilon \ \forall n \ge N\\ &\Rightarrow |(f_n(x) - f_N(x))| < \epsilon \dots \dots (1) \ \forall n \ge N \ \forall x \in K. \end{split}$$

Since all continuous functions are uniformly continuous on the compact set K, there exists $\delta_i > 0$ such that $d(x, y) < \delta_i \Rightarrow |f_i(x) - f_i(y)| < \epsilon$ (2) for $x, y \in K$, i = 1, 2, ..., N. Let $\delta = \min\{\delta_1, \delta_2, ..., \delta_N\}$. Therefore $d(x, y) < \delta \Rightarrow |f_n(x) - f_n(y)| < \epsilon$(3) for $x, y \in K$, n = 1, 2, ..., N. For n > N,

$$\begin{aligned} d(x,y) < \delta \\ \Rightarrow |f_n(x) - f_n(y)| &= |(f_n(x) - f_N(x)) + (f_N(x) - f_N(y)) + f_N(y) - f_n(y)| \\ &\leq |(f_n(x) - f_N(x))| + |f_N(x) - f_N(y)| + |f_N(y) - f_n(y)| \\ &< \epsilon + \epsilon + \epsilon \text{ (by (1) and(2))} \end{aligned}$$
$$\Rightarrow |(f_n(x) - f_n(y))| < 3\epsilon......(4)$$

Combination (3) and (4) proves the result.

Theorem 5.11 If K is compact and if $f_n \in \mathscr{C}(K)$ for n = 1, 2, 3... and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then

(a) $\{f_n\}$ is uniformly bounded on K

(b) $\{f_n\}$ contains a uniformly convergent subsequence.

Proof:(a) Let $\epsilon > 0$ be given. By hypothesis $\{f_n\}$ is equicontinuous. Accordingly, there exists $\delta > 0$ such that $d(x, y) < \delta \Rightarrow |f_n(x) - f_n(y)| < \epsilon....(1)$ for $x, y \in K$, n = 1, 2, ... Clearly, $K \subset \bigcup_{x \in K} N_{\delta}(x)$ where $N_{\delta}(x)$ is an neighbourhood of radius δ with center x. Since K is compact, there

are finitely many points $p_1, p_2, ..., p_r$ in K such that $K \subset \bigcup_{i=1}^N N_{\delta}(p_i).....(2)$. Since $\{f_n\}$ is pointwise bounded, $\{f_n(p_i)\}$ is bounded for i = 1, 2, ..., r. There exists $M_i < \infty, i = 1, 2, ..., r$ such that $|f_n(p_i)| < M_i$. Let $M = \max\{M_1, M_2, ..., M_r\}$. Then $|f_n(p_i)| < M_{.....}(3) \quad \forall i = 1, 2, ..., r$

and $\forall n$.

Let $x \in K$. Then (2) implies $x \in N_{\delta}(p_i)$ for some $i, 1 \leq i \leq r$. Therefore,

$$d(x, p_i) < \delta \Rightarrow |f_n(x) - f_n(p_i)| < \epsilon....(4) \text{ (by (1))}$$

Now,

$$|f_n(x)| = |f_n(x) - f_n(p_i) + f_n(p_i)|$$

$$\leq |f_n(x) - f_n(p_i)| + |f_n(p_i)|$$

$$< \epsilon + M. \text{ (by (3) and (4))}$$

Hence $\{f_n\}$ is uniformly bounded on K.

(b)Given K is compact and $\{f_n\}$ is pointwise bounded, equicontinuous on K. To Prove: $\{f_n\}$ contains a uniformly convergent subsequence. Since K is compact, there exists a countable dense subset $E \subseteq K$ (i.e.) $\overline{E} \subset K$. Theorem 5.9 shows that $\{f_{n_i}(x)\}$ converges for all $x \in E$. Let $g_i = f_{n_i}$. We shall show that $\{g_i\}$ converges uniformly on K. Let $\epsilon > 0$ be given. Since $\{f_n\}$ is equicontinuous on K, there exists $\delta > 0$ such that

$$d(x,y) < \delta \Rightarrow |f_n(x) - f_n(y)| < \epsilon....(1) for \ x, y \in K.$$

Let $V(x, \delta) = \{y \in K | d(x, y) < \delta\} (= N_{\delta}(x))$. Clearly, $K \subseteq \bigcup_{x \in K} V(x, \delta)$. Since K is compact and E is dense in K, there exists $x_1, x_2, ..., x_m$ in E such that

$$K \subseteq V(x_1, \delta) \cup V(x_2, \delta) \cup \dots \cup V(x_m, \delta).....(2)$$

. For $1 \le s \le m, \{g_i(x_s)\}$ converges. Then there exists N > 0 such that

$$|g_i(x_s) - g_j(x_s)| < \epsilon....(3) \ \forall i, j \ge N.$$

Let $x \in K$, then $(2) \Rightarrow x \in V(x_s, \delta)$ for some $1 \le s \le m$.

$$d(x, x_s) < \delta \Rightarrow |g_i(x) - g_i(x_s)| < \epsilon....(4) \forall i$$

(by (1): $g_i = f_n$ for some n) Now,

$$\begin{aligned} |g_i(x) - g_j(x)| &= |g_i(x) - g_i(x_s) + g_i(x_s) - g_j(x_s) + g_j(x_s) - g_j(x)| \\ &\leq |g_i(x) - g_i(x_s)| + |g_i(x_s) - g_j(x_s)| + |g_j(x_s) - g_j(x)| \\ &< \epsilon + \epsilon + \epsilon \text{ (by (3) and (4)) } \forall i, j \ge N \\ (i.e.)|g_i(x) - g_i(x)| < 3\epsilon \ \forall i, j \ge N. \end{aligned}$$

Since x is arbitrary, the Cauchy's criteria guarantees that $\{g_i\}$ converges uniformly on K.

Theorem 5.12 Stone Weierstrass Theorem- the original form of Weierstrass theorem: If f is a continuous complex function on [a, b], then there exists a sequence of polynomials p_n such that

$$\lim_{n \to \infty} p_n(x) = f(x)$$

uniformly on [a, b]. If f is real, p_n may be taken real. **Proof:** Without loss of generality, we assume that [a, b] = [0, 1], f(x) = 0outside [0,1], f(0) = 0 and f(1) = 0. For, suppose the result is true for this case, let

$$g(x) = f(x) - f(0) - x[f(1) - f(0)]$$

$$g(1) = f(1) - f(0) - 1[f(1) - f(0)]$$

$$= 0$$

$$g(0) = f(0) - f(0)$$

$$= 0$$

But $f(x) - g(x) = f(0) + x[f(1) - f(0)].$

Since g(x) is the uniform limit of a sequence of polynomials, f(x) can also be obtained as the uniform limit of a sequence of polynomials. Let

$$Q_n(x) = c_n(1-x^2)^n, n = 1, 2, 3...$$

where we choose c_n such that

$$\int_{-1}^{1} Q_n(x) dx = 1.....(1)$$

Now

$$\begin{split} \int_{-1}^{1} (1-x^2)^n dx &= 2 \int_{0}^{1} (1-x^2)^n dx \\ 2 &\ge \int_{-1}^{\frac{1}{\sqrt{n}}} (1-x^2)^n dx \ (\because [0, \frac{1}{\sqrt{n}}] \subseteq [0, 1]) \\ 2 &\ge \int_{-1}^{\frac{1}{\sqrt{n}}} (1-nx^2) dx \ (\text{by binomial theorem}) \\ &= 2 \left[x - \frac{nx^3}{3} \right]_{0}^{\frac{1}{\sqrt{n}}} \end{split}$$

$$\begin{aligned} &= 2 \left[\frac{1}{\sqrt{n}} - \frac{n}{3n^{3/2}} \right] \\ &= 2 \left[\frac{1}{\sqrt{n}} - \frac{1}{3\sqrt{n}} \right] \\ &= 2 \left(\frac{2}{3\sqrt{n}} \right) \\ &= 2 \left(\frac{2}{3\sqrt{n}} \right) \\ &= \frac{4}{3\sqrt{n}} \\ &> \frac{1}{\sqrt{n}} \dots (2) (\because 4/3 > 1) \end{aligned}$$

$$(1) \Rightarrow \int_{-1}^{1} Q_n(x) dx = 1 \\ \Rightarrow \int_{-1}^{1} C_n (1 - x^2)^n dx = 1 \\ \Rightarrow \int_{-1}^{1} (1 - x^2)^n dx = 1 \\ \Rightarrow \int_{-1}^{1} (1 - x^2)^n dx = \frac{1}{C_n} \\ &\Rightarrow \frac{1}{C_n} = \int_{-1}^{1} (1 - x^2)^n dx \\ &\Rightarrow \frac{1}{C_n} > \frac{1}{\sqrt{n}} (by (2)) \\ &\Rightarrow C_n > \sqrt{n} \dots (3) \end{aligned}$$

$$Now, \delta \le |x| \le 1 \Rightarrow \delta^2 \le x^2 \\ &\Rightarrow -\delta^2 \ge -x^2 \\ &\Rightarrow 1 - \delta^2 \ge 1 - x^2 \\ &\Rightarrow (1 - \delta^2)^n \ge C_n (1 - x^2)^n \\ &\Rightarrow C_n (1 - x^2)^n \le C_n (1 - \delta^2)^n \\ &\Rightarrow C_n (1 - x^2)^n \le C_n (1 - \delta^2)^n \\ &\Rightarrow C_n (1 - x^2)^n \le \sqrt{n} (1 - \delta^2)^n (by (3)) \\ &\Rightarrow Q_n(x) \le \sqrt{n} (1 - \delta^2)^n \dots (4) \\ &\to 0 \text{ as } n \to \infty \end{aligned}$$

$$\text{Let } p_n(x) = \int_{-1}^{1} f(x + t)Q_n(t) dt \\ &= 0 + \int_{-x}^{1-x} f(x + t)Q_n(t) dt + 0 \end{aligned}$$

5. UNIT V

$$\therefore p_n(x) = \int_{-x}^{1-x} f(x+t)Q_n(t)dt = \int_0^1 f(T)Q_n(T-x)dT.....(5)$$

Obviously $p_n(x)$ is a polynomial in x. Moreover $p_n(x)$ is real when f is real. Claim: $p_n(x) \to f(x)$ uniformly. Since f(x) is continuous on [0,1] it is uniformly continuous also. Let $\epsilon > 0$ be given, then there exists $\delta > 0$ such that

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon/2 \dots (6) for x, y \in [0, 1].$$

Let $M = \sup |f(x)|$ for any $x \in [0,1]$.

$$\begin{split} |p_n(x) - f(x)| &= \left| \int_{-1}^{1} f(x+t)Q_n(t)dt - f(x) \right| \\ &= \left| \int_{-1}^{1} f(x+t)Q_n(t)dt - f(x) \int_{-1}^{1} Q_n(t)dt \right| \left(\because \int_{-1}^{1} Q_n(x)dx = 1 \right) \\ &= \left| \int_{-1}^{1} f(x+t)Q_n(t)dt - \int_{-1}^{1} f(x)Q_n(t)dt \right| \\ &= \left| \int_{-1}^{1} [f(x+t) - f(x)]Q_n(t)dt \right| \\ &\leq \int_{-1}^{1} |f(x+t) - f(x)|Q_n(t)dt + \int_{-\delta}^{\delta} |f(x+t) - f(x)|Q_n(t)dt \\ &+ \int_{\delta}^{1} |f(x+t) - f(x)|Q_n(t)dt \\ &\leq 2M \int_{-1}^{-\delta} Q_n(t)dt + \epsilon/2 \int_{-\delta}^{\delta} Q_n(t)dt + 2M \int_{0}^{1} Q_n(t)dt \\ &\leq 2M \sqrt{n}(1-\delta^2)^n \int_{-1}^{-\delta} dt + \epsilon/2 \int_{-1}^{1} Q_n(t)dt \\ &+ 2M \sqrt{n}(1-\delta^2)^n \cdot 1 + \epsilon/2 \cdot 1 + 2M \sqrt{n}(1-\delta^2)^n \cdot 1) \\ &\left(\because \int_{-1}^{\delta} dt = 1 - \delta < 1, \int_{\delta}^{1} dt = 1 - \delta < 1 \right) \\ &\leq 4M \sqrt{n}(1-\delta^2)^n + \epsilon/2 \to 0 \quad \text{as } n \to \infty \end{split}$$

 $\therefore p_n(x) \to f(x)$ uniformly.

Some Special Functions

Definition 5.13 Power Series: A function of the form

$$f(x) = \sum_{n=0}^{\infty} C_n x^n \quad (or) \ f(x) = \sum_{n=0}^{\infty} C_n (x-a)^n$$

is called a power series.

Theorem 5.14 Suppose the series $\sum_{n=0}^{\infty} C_n x^n \dots (1)$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} C_n x^n \dots (2)$ (|x| < R), then (1) converges uniformly on $[-R+\epsilon, R-\epsilon]$ no matter which $\epsilon > 0$ is choosen. The function f is continuous and differentiable in (-R, R) and $f'(x) = \sum_{n=0}^{\infty} nC_n x^{n-1} \dots (3)$ (|x| < R).

Proof: Let $\epsilon > 0$ be given. For $|x| \leq R - \epsilon$; $|C_n x^n| \leq |C_n (R - \epsilon)^n|$ (4). We know, by Cauchy's root test, any power series $\sum_{n=0}^{\infty} C_n Z_n$ converges in |x| < R, where R is the radius of convergence and is given by

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|C_n|}}$$

:. The power series $\sum_{0}^{\infty} C_n(R-\epsilon)^n$ also converges. $\sum_{n=0}^{\infty} C_n x_n$ converges uniformly (by Weierstrass M test for uniform convergence), for $x \in [-R + \epsilon, R-\epsilon]$. Since $\lim_{n\to\infty} \sup \sqrt[n]{|C_n|} = \lim_{n\to\infty} \sqrt[n]{|C_n|}$, (1),(3) have the same radius of convergence. (i.e.) By applying Theorem 5.1 for series we see that (3) holds for $x \in [-R + \epsilon, R - \epsilon]$. But when |x| < R, we can find $\epsilon > 0$ such that $|x| \leq R - \epsilon$. Hence (3) holds for |x| < R. Since f' exists, f is continuous.

Corollary 5.15 Under the hypothesis of Theorem 5.14, f has derivatives of all orders in $(-\mathbb{R}, \mathbb{R})$ which are given by

$$f^k(x) = \sum_{n=k}^{\infty} n(n-1)(n-2)\cdots(n-k+1)C_n x^{n-k}.$$

In particular $f^k(0) = k!C_k$ for k = 0, 1, 2, ...**Proof:** Let $f(x) = \sum_{n=0}^{\infty} C_n x^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n + ...$

$$f'(x) = C_1 + 2C_2x + 3C_3x^2 + \dots + nC_nx^{n-1}$$

$$f'(0) = 1!C_1$$

$$f''(x) = 2C_2 + 3 \cdot 2C_3x + \dots + n(n-1)C_nx^{n-2} + \dots$$

$$f''(0) = 2!c_2$$

$$f'''(x) = 3 \cdot 2 \cdot 1 \cdot C_3 + \dots + n(n-1)(n-2)C_nx^{n-3} + \dots$$

$$f'''(0) = 3!C_3$$

$$f^k(x) = \sum_{n=k}^{\infty} n(n-1)(n-2) \cdots (n-k+1)C_nx^{n-k}$$

$$\therefore f^k(0) = C_kk(k-1)(k-2) \cdots 1 = k!C_k.$$

Theorem 5.16 Abel's theorem: Suppose $\sum C_n$ converges. Put $f(x) = \sum_{n=0}^{\infty} C_n x^n$ (-1 < x < 1), then

$$\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} C_n.$$

Proof: Let $S_n = C_0 + C_1 + C_2 + ... + C_{n-1} + C_n$, $S_{-1} = 0$ Now,

$$\sum_{n=0}^{m} C_n x^n = \sum_{n=0}^{m} (S_n - S_{n-1}) x^n \ (\because S_n - S_{n-1} = C_n)$$
$$= \sum_{n=0}^{m} S_n x^n - \sum_{n=0}^{m} S_{n-1} x^n$$
$$= \sum_{n=0}^{m} S_n x^n - \sum_{n=1}^{m} S_{n-1} x^n \ (S_{-1} = 0)$$
$$= \sum_{n=0}^{m-1} S_n x^n - \sum_{n=1}^{m} S_{n-1} x^n + S_m x^m$$
$$= \sum_{n=0}^{m-1} S_n x^n - \left(\sum_{n=1}^{m} S_{n-1} x^{n-1}\right) x + S_m x^m$$
$$= \sum_{n=0}^{m-1} S_n x^n - \left(\sum_{n=1}^{m} S_n x^n\right) x + S_m x^m$$
$$\sum_{n=0}^{m} C_n x^n = (1-x) \left(\sum_{n=0}^{m-1} S_n x^n\right) x + S_m x^m$$

Taking limits as $m \to \infty$ we get

$$\sum_{n=0}^{\infty} C_n x^n = (1-x) \left(\sum_{n=0}^{\infty} S_n x^n \right) x + 0 \ (|x| < 1 \Rightarrow x^m \to 0 asm \to \infty)$$
$$(i.e.) f(x) = (1-x) \sum_{n=0}^{\infty} S_n x^n \dots (1)$$

Since $\sum C_n$ converges, $\{S_n\}$ also converges, say to s... for $\epsilon > 0$, there exists N > 0 such that

$$|S_n - S| < \epsilon/2 \dots (2) \ \forall n \ge N$$

Now, since |x| < 1,

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \Rightarrow (1-x) \left(\sum_{n=0}^{\infty} x^n\right) = 1 \dots (3)$$

Now,

$$\begin{split} |f(x) - S| &= \left| (1 - x) \sum_{n=0}^{\infty} S_n x^n - S \right| \text{ (by (1))} \\ &= \left| (1 - x) \sum_{n=0}^{\infty} S_n x^n - S(1 - x) \sum_{n=0}^{\infty} x^n \right| \text{ (by (3))} \\ &= \left| (1 - x) \left(\sum_{n=0}^{\infty} (S_n x^n - S x^n) \right) \right| \\ &= \left| (1 - x) \left(\sum_{n=0}^{\infty} (S_n - S) x^n + \sum_{n=N+1}^{\infty} (S_n - S) x^n \right) \right| \\ &= \left| (1 - x) \left(\sum_{n=0}^{N} (S_n - S) x^n + \sum_{n=N+1}^{\infty} |S_n - S|| x|^n \right) \\ &\leq |(1 - x)| \left(\sum_{n=0}^{N} |S_n - S|| x|^n + \sum_{n=N+1}^{\infty} |S_n - S|| x|^n \right) \\ &= |(1 - x)|k + |(1 - x)| \sum_{n=N+1}^{\infty} |S_n - S|| x|^n \text{ where } k = \sum_{n=0}^{N} |S_n - S|| x|^n \\ &< |(1 - x)|k + |(1 - x)| \epsilon/2 \sum_{n=N+1}^{\infty} |x|^n \text{ (by (2))} \\ &< |(1 - x)|k + |(1 - x)| \epsilon/2 \sum_{n=0}^{\infty} |x|^n \\ &= |(1 - x)|k + |(1 - x)| \epsilon/2 \frac{1}{1 - |x|} \dots (4) \end{split}$$

we choose $\delta = \epsilon/2k, \therefore |x-1| < \delta \Rightarrow |x-1| < \epsilon/2k$. when $x \to 1, 1-|x| = |1-x|$

$$\therefore |f(x) - S| < \frac{\epsilon}{2k}k + |1 - x|\epsilon/2 \cdot \frac{1}{|1 - x|}$$
$$= \epsilon, |x - 1| < \delta$$
$$(i.e.) \lim_{x \to 1} f(x) = S \text{ (or) } \lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} C_n$$

Corollary 5.17 If $\sum a_n$, $\sum b_n$, $\sum c_n$ converge to A, B, C and if $c_n = a_0b_n + a_1b_{n-1} + ... + a_nb_0$ then C = AB.

Proof:

Let
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

 $g(x) = \sum_{n=0}^{\infty} b_n x^n$
 $h(x) = \sum_{n=0}^{\infty} c_n x^n$, where $0 \le x \le 1$.

For x < 1, all these series converge (by Theorem 5.14). Hence the series can be multiplied. (i.e.) f(x)g(x) = h(x)

$$\Rightarrow \lim_{x \to 1} \{f(x)g(x)\} = \lim_{x \to 1} h(x)$$

$$\Rightarrow \lim_{x \to 1} f(x) \lim_{x \to 1} g(x) = \lim_{x \to 1} h(x)$$

$$\Rightarrow (\sum_{n=0}^{\infty} a_n) (\sum_{n=0}^{\infty} b_n) = (\sum_{n=0}^{\infty} a_n) \text{ (by Abel's theorem)}$$

$$\Rightarrow AB = C. (\because \sum a_n = A, \sum b_n = B, \sum c_n = C).$$

$$\therefore C = AB.$$

Theorem 5.18 Given a double sequence $\{a_{ij}\}$, i=1,2,3..., j=1,2,3... Suppose that $\sum_{j=1}^{\infty} |a_{ij}| = b_i$ (i=1,2,3,...) and $\sum b_i$ converges, then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

(Inversion in the order of summation).

Proof: Let $E = \{x_0, x_1, x_2, ...\}$ be a countable set such that $x_n \to x_0$. Define

$$f_i(x_0) = \sum_{j=1}^{\infty} a_{ij} \ (i = 1, 2, 3, ...)$$
$$f_i(x_n) = \sum_{j=1}^{n} a_{ij} \ (n, i = 1, 2, 3, ...) \text{ and}$$
$$g(x) = \sum_{i=1}^{\infty} f_i(x) \ (x \in E).$$

$$\lim_{n \to \infty} f_i(x_n) = \lim_{n \to \infty} \sum_{j=1}^n a_{ij}$$
$$= \sum_{j=1}^\infty a_{ij}$$
$$= f_i(x_0)$$
$$\therefore \lim_{x_n \to x_0} f_i(x_n) = f_i(x_0).$$

:. Each f_i is continuous at x_0 . (:: $\sum_{j=1}^{\infty} a_{ij}$ converges to $b_i \Rightarrow \sum a_{ij}$ converges, $f_i(x_0)$ exists $\forall i$) Now,

$$|f_i(x_n)| = \left| \sum_{j=1}^n a_{ij} \right|$$

$$\leq \sum_{j=1}^n |a_{ij}|$$

$$\leq \sum_{j=1}^\infty |a_{ij}|$$

$$= b_i \text{ (by hypothesis)}$$

$$(i.e.)|f_i(x_n)| \leq b_i (\forall n, \text{ hence } \forall x_n \in E)$$

$$(or)|f_i(x)| \leq b_i.....(1) \ \forall x \in E.$$

Since $\sum b_i$ converges, (1) and weierstrass test guarantees that $\sum_{i=1}^{\infty} f_i(x)$ converges uniformly ((i.e.) g(x)). Now,

$$\lim_{x_n \to x_0} g(x_n) = \lim_{x_n \to x_0} \left(\sum_{i=1}^{\infty} f_i(x_n) \right)$$
$$= \sum_{i=1}^{\infty} \left(\lim_{x_n \to x_0} f_i(x) \right)$$
$$= \sum_{i=1}^{\infty} f_i(x_0) \text{ (by uniform convergence and continuity theorem)}$$
$$= g(x_0)$$

(i.e.) g(x) is continuous at x_0

$$g(x_0) = \lim_{n \to \infty} g(x_n)$$

$$\Rightarrow \sum_{i=1}^{\infty} f_i(x_0) = \lim_{n \to \infty} \sum_{i=1}^{\infty} f_i(x_n)$$

$$\Rightarrow \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{ij}\right) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \left(\sum_{j=1}^{n} a_{ij}\right)$$

$$\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{ij}\right) = \lim_{n \to \infty} \sum_{j=1}^{n} \left(\sum_{i=1}^{\infty} a_{ij}\right)$$

$$\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{ij}\right) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$$

$$\therefore \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{ij}\right) = \sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} a_{ij}\right)$$

Theorem 5.19 Taylor's theorem: Suppose $f(x) = \sum_{n=0}^{\infty} C_n x^n$, the series converging in |x| < R. If -R < a < R then f can be expanded in a power series about the point x = a which converges in |x - a| < R - |a| and

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n \quad (|x-a| < R-|a|).$$

Proof:

Let
$$f(x) = \sum_{n=0}^{\infty} C_n x^n$$
$$= \sum_{n=0}^{\infty} C_n ((x-a)+a)^n$$
$$= \sum_{n=0}^{\infty} C_n \left[\sum_{m=0}^n \binom{n}{m} (x-a)^m a^{n-m} \right]$$
$$= \sum_{n=0}^{\infty} \sum_{m=0}^n C_n \binom{n}{m} ((x-a)^m a^{n-m})$$
$$= \sum_{n=0}^{\infty} \sum_{m=0}^n C_n \binom{n}{m} ((x-a)^m a^{n-m}).....(1)$$
$$\left(\because \binom{n}{m} = 0 \text{ if } m \ge n \right)$$

Consider the series,

$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} |C_n \binom{n}{m} ((x-a)^m a^{n-m})|.$$

The series,

$$\sum_{n=0}^{\infty} |C_n| \sum_{m=0}^{n} \binom{n}{m} |x-a|^m |a|^{n-m} = \sum_{n=0}^{\infty} |C_n| (|x-a|+|a|)^n,$$

this being the power series converges in |x - a| + |a| < R (by Theorem 5.14).

(i.e.) in |x - a| < R - |a|. (i.e.) the series (1) converge absolutely in |x - a| < R - |a|. Hence by Theorem 5.18, order of summation in (1) can be changed.

$$f(x) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} C_n \binom{n}{m} (x-a)^m a^{n-m}$$

= $\sum_{n=0}^{\infty} \sum_{n=m}^{n} C_n \binom{n}{m} (x-a)^m a^{n-m} (\because \binom{n}{m} = 0 \text{ if } n < m)$
= $\sum_{n=0}^{\infty} \sum_{n=m}^{n} C_n \frac{n(n-1)...(n-m+1)}{m!} (x-a)^m a^{n-m}$
= $\sum_{n=0}^{\infty} \frac{1}{m!} \left(\sum_{n=m}^{n} C_n n(n-1)...(n-m+1)a^{n-m} \right) (x-a)^m$
 $\therefore f(x) = \sum_{m=0}^{\infty} \frac{f^m(a)}{m!} (x-a)^m \text{ (by Corollary 5.15)}$

Theorem 5.20 Suppose the series $\sum a_n x^n$ and $\sum b_n x^n$ converge in the segment S = (-R, R). Let E be the set of all x in S at which

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n \dots (1).$$

If E has a limit point in S, then $a_n = b_n, n = 0, 1, 2, ...$ hence (1) holds for all $x \in S$.

Proof: Put $C_n = a_n - b_n, \forall n = 0, 1, 2, \dots$ Define

$$f(x) = \sum_{n=0}^{\infty} C_n x^n$$

Now,
$$f(x) = \sum_{n=0}^{\infty} (a_n - b_n) x^n$$
$$= \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} b_n x^n.$$

Therefore $E = \{x \in S | f(x) = 0\}$ (2) $(\because \sum a_n x^n = \sum b_n x^n \forall x \in E)$. Let A be the set of all limit points of E in S and let B = S - A. Obviously, B is open in S. Also $S = A \cup B$ (3) We first show that A is open. Let $x_0 \in A$ ((i.e.) x_0 is a limit point of E in S). Since $-R < x_0 < R$, f(x) can be expanded by Taylor's theorem as a power series about x_0 , $|x - x_0| < R - |x_0|$.

(*i.e.*)
$$f(x) = \sum_{n=0}^{\infty} d_n (x - x_0)^n \dots (4), |x - x_0| < R - |x_0|$$

Claim: All d_n 's are zero. Otherwise, let k be the smallest non-negative integer such that $d_k \neq 0$. ((i.e.) $d_1 = d_2 = \ldots = d_{k-1} = 0$).

$$\therefore f(x) = \sum_{n=k}^{\infty} d_n (x - x_0)^n$$

= $d_k (x - x_0)^k + d_{k+1} (x - x_0)^{k+1} + \dots + d_{k+2} (x - x_0)^{k+2} + \dots$
= $(x - x_0)^k (d_k + d_{k+1} (x - x_0) + \dots + d_{k+2} (x - x_0)^2 + \dots)$
 $f(x) = (x - x_0)^k g(x) \dots (5)$ where $g(x) = d_k + d_{k+1} (x - x_0) + \dots$
= $\sum_{m=0}^{\infty} d_{m+k} (x - x_0)^m$

Since g(x) is continuous and $g(x_0) \neq 0$, there exists $\delta > 0$ such that $g(x) \neq 0$ for all $|x - x_0| < \delta$. It follows from (5) that $f(x) \neq 0$, $\forall 0 < |x - x_0| < \delta$. But this contradicts that x_0 is a limit point of E. \therefore All $d'_n s$ are zero. (i.e.) f(x) = 0, $\forall |x - x_0| < R - |x_0|$ (by (4)). Hence $(|x - x_0| < R - |x_0|) \subset A$ and A is open. Since S is connected, it cannot be expressed as a disjoint union of open sets. \therefore (3) $\Rightarrow A = \phi$ (or) $B = \phi$ ($\because A \cap B = \phi$). Since E has limit points, by hypothesis in $S, A \neq \phi$. $\therefore B = \phi$. Hence S = A (by (3)). Claim: $A \subset E$. Let $y \in A$ (i.e.) y is a limit point of E(in S) (i.e.) there exists a sequence $\{x_n\}$ in E such that $x_n \to y \therefore f(x_n) \to f(y) \therefore f(y) = 0$ ($\because x_n \in E \Rightarrow f(x_n) = 0 \quad \forall n) \Rightarrow y \in E$. $\therefore A \subset E$. So, $A \subset E \subset S = A \Rightarrow E = S(=A)$. Now, by the definition of $E, f(x) = 0 \quad \forall x \in E$

$$\Rightarrow f(x) = 0 \ \forall x \in S \ (\because E = S)$$
$$\Rightarrow \sum_{0}^{\infty} a_n x_n - \sum_{n=0}^{\infty} b_n x_n = 0 \ \forall x \in S$$
$$\Rightarrow \sum_{0}^{\infty} a_n x_n = \sum_{n=0}^{\infty} b_n x_n \ \forall x \in S$$

(i.e.) (1) holds for $\forall x \in S$. Again, $f(x) = 0 \forall x \in S \Rightarrow C_n = 0 \quad \forall n$ (by Corollary 5.15) $\Rightarrow a_n = b_n \quad \forall n$. Hence the proof.

The Exponential and logarithmic functions:

Definition 5.21 $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. This series is called the exponential series. The ratio test shows that the series converges for every complex number z.

Definition 5.22 We define $E(x) = e^x$ for all real x. E is called the exponential function.

Note 5.23 $E(1) = \sum_{n=0}^{\infty} \frac{1}{n!} (= e).$

Result 5.24 (1) E(z)E(w) = E(z+w). **Proof:**

$$E(z)E(w) = \left(\sum_{n=0}^{\infty} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{w^n}{n!}\right)$$
$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \left(\frac{z^k}{k!}\right) \left(\frac{w^{n-k}}{(n-k)!}\right)\right)$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{k=0}^n \frac{n! z^k w^{n-k}}{k! (n-k)!}\right)$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} z^k w^{n-k}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} (z+w)^n$$
$$= \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!}$$
$$= E(z+w).$$

(2) $E(z) \neq 0$ for any z. **Proof:**

$$E(z)E(-z) = E(z-z) \text{ (by result (1))}$$
$$= E(0)$$
$$= 1 (:: E(0) = 1)$$
$$\Rightarrow E(z) \neq 0$$
also $E(-z) = \frac{1}{E(z)}$

(3) E(x) > 0 for all real x. **Proof: Case(i):** Let x > 0.

$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

= $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$
> $0 \ (\because x > 0 \Rightarrow \frac{x^i}{i!} > 0 \ \forall i)$

Case(ii): Let x < 0. Then x = -y where y is positive.

$$\therefore E(x) = E(-y)$$

= $\frac{1}{E(y)}$ (by result (2))
> 0 ($\because y > 0 \Rightarrow E(y) > 0$ (by Case (i))
 $\therefore E(x) > 0$

Case(iii): x = 0.

$$E(x) = E(0)$$

= 1 > 0
hence E(x) > 0 for all real x.

(4) $E(x) \to \infty$ as $x \to \infty$ and $E(x) \to 0$ as $x \to -\infty$. **Proof:**

(i)
$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

> ∞ (as $x \to \infty$)

(ii) Let
$$x = -y$$
.

$$\begin{aligned} x \to -\infty &\Rightarrow -y \to -\infty \\ &\Rightarrow y \to \infty \\ &\Rightarrow E(y) \to \infty \text{ (by (i))} \\ E(x) &= E(-y) = \frac{1}{E(y)} \to 0 \\ (i.e.) \ E(x) \to 0 \text{ as } x \to -\infty. \end{aligned}$$

(5) E(x) is strictly increasing on the whole real line. **Proof:** (i) Let x < y. Then $x^n < y^n$.

$$\Rightarrow \frac{x^n}{n!} < \frac{y^n}{n!}$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{x^n}{n!} < \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

$$\Rightarrow E(x) < E(y).$$

(ii) Let x, y < 0 and x < y.

 $\therefore x = -x_1, y = -y_1$ where x_1 and y_1 are positive.

$$x < y \Rightarrow -x_1 < -y_1$$

$$\Rightarrow x_1 > y_1$$

$$\Rightarrow E(x_1) > E(y_1) \text{ (by (i))}$$

$$\Rightarrow \frac{1}{E(x_1)} < \frac{1}{E(y_1)}$$

$$\Rightarrow E(-x_1) < E(-y_1) \text{ (by result (2))}$$

$$\Rightarrow E(x) < E(y).$$

(6) E'(z) = E(z). **Proof:**

$$\begin{split} E'(z) &= \lim_{h \to 0} \frac{E(z+h) - E(z)}{n} \\ &= \lim_{h \to 0} \frac{E(z)E(h) - E(z)}{h} \text{ (by (1))} \\ &= \lim_{h \to 0} E(z) \left(\frac{E(h) - 1}{h}\right) \\ &= E(z) \lim_{h \to 0} \left(\frac{E(h) - 1}{h}\right) \\ &= E(z) \lim_{h \to 0} \left(\frac{\sum_{0}^{\infty} \frac{h^{n}}{n!} - 1}{h}\right) \\ &= E(z) \lim_{h \to 0} \left(\frac{1 + \sum_{0}^{\infty} \frac{h^{n}}{n!} - 1}{h}\right) \\ &= E(z) \lim_{h \to 0} \left(\sum_{n=1}^{\infty} \frac{h^{n-1}}{n!}\right) \\ &= E(z) \lim_{h \to 0} \left(\sum_{n=1}^{\infty} \frac{h^{n-1}}{n!}\right) \\ &= E(z) \lim_{h \to 0} \left(1 + \frac{h}{2!} + \frac{h^{3}}{3!} + \dots\right) \\ &= E(z) \cdot 1 \\ &= E(z). \end{split}$$

(7) $E(n) = e^n$ for all n. **Proof: Case(i):** n > 0. we have $E(z_1 + z_2 + ... + z_n) = E(z_1)E(z_2)\cdots E(z_n)$ (by result 1). Put $z_i = 1 \quad \forall i$, we have

$$E(1 + 1 + 1 + \dots + 1) = E(1)E(1) \cdots E(1)$$
$$E(n) = ee \cdots e \ (\because E(1) = e).$$
$$= e^{n}$$

Case(ii): n < 0.

Let n = -m where m is a positive integer.

$$E(n) = E(-m) = \frac{1}{E(m)}$$

= $\frac{1}{e^m}$ (by Case(i) as *m* is a positive integer)
= e^{-m}
= e^n

Case(iii): $p = \frac{n}{m}$, n and m are integers and $m \neq 0$. Now,

$$(E(p))^m = E(p)E(p)\cdots E(p)$$
$$= E(p+p+\ldots+p)$$
$$= E(mp)$$
$$= E(n) \ (\because p = \frac{n}{m})$$
$$(E(p))^m = e^n \ (by \ Case \ (i) \ and \ (ii))$$
$$E(p) = (e^n)^{1/m}$$
$$= e^{n/m}$$

 $= e^p$

(8) $\lim_{x\to\infty} x^n e^{-x} = 0$ for every n. **Proof:**

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$> \frac{x^{n+1}}{(n+1)!}$$

$$\Rightarrow e^{x} > \frac{x^{n+1}}{(n+1)!}$$

$$\Rightarrow e^{x} > \frac{x^{n} \cdot x}{(n+1)!}$$

$$\Rightarrow \frac{(n+1)!}{x} > \frac{x^{n}}{e^{x}}$$

$$x^{n}e^{-x} < \frac{(n+1)!}{x}$$

$$\to 0 \text{ as } x \to \infty$$

$$(i.e.) \lim_{x \to \infty} x^{n}e^{-x} = 0.$$

Theorem 5.25 Let e^x be defined on R. Then

- 1. e^x is continuous and differentiable for all x.
- 2. $(e^x)' = e^x$.
- 3. e^x is strictly increasing function of x and $e^x > 0$.
- 4. $e^{x+y} = e^x e^y$.
- 5. $e^x \to \infty$ as $x \to \infty$ and $e^x \to 0$ as $x \to -\infty$.
- 6. $\lim_{x\to\infty} x^n e^{-x} = 0$ for every n. (i.e.) $e^x \to \infty$ faster than any power of x

Logarithmic function:

Definition 5.26 Inverse of E is L. E(L(y)) = y, (y > 0); L(E(x)) = x, (x real).

Result 5.27 (1) L(1) = 0 (*i.e.*) $\log 1 = 0$. **Proof:** L(E(x)) = x. Put x = 0, we have

$$E(x) = E(0)$$
$$L(1) = L(E(0))$$
$$= 0$$

(2) $\int_{1}^{x} \frac{1}{x} dx = L(x)$ **Proof:**

$$E(L(y)) = y$$

Differentiate w.r.t y, we get $E'(L(y))L'(y) = 1$
 $yL'(y) = 1$
 $L'(y) = \frac{1}{y}$
 $L(y) = \int_{1}^{y} \frac{1}{y}dy$
(or) $L(x) = \int_{1}^{x} \frac{1}{x}dx$.

(3) L(uv) - L(u) + L(v)**Proof:** Put u = E(x); v = E(y)

$$L(E(x)E(y)) = L(uv)$$

= $L(E(x + y))$
= $x + y$
= $L(E(x)) + L(E(y))$
= $L(u) + L(v)$

(4) $L(\frac{u}{v}) = L(u) - L(v)$ **Proof:** Put u = E(x); v = E(y)

$$L\left(\frac{u}{v}\right) = L\left(\frac{E(x)}{E(y)}\right)$$
$$= L(E(x)E(-y))$$
$$= x - y$$
$$= L(E(x)) - L(E(y))$$
$$= L(u) - L(v)$$

(5) $\log x \to \infty$ as $x \to \infty$ and $\log x \to -\infty$ as $x \to 0$ **Proof:** L(E(y)) = y. Put E(y) = x. $y \to \infty, x \to \infty$; $y \to -\infty, x \to 0$ 0. $\log x = y$; $\log x \to \infty$ as $x \to \infty$ and $\log x \to -\infty$ as $x \to 0$ (6) $L(x^n) = nL(x)$

Proof: Case(i): n is a positive integer.

$$L(x^n) = L(x \cdot x \cdots x)$$

= $L(x) + L(x) + \dots + L(x)$ (by (3))
= $nL(x)$

Case(ii): n is a negative integer. n = -m, where m is a positive integer.

$$L(x^{n}) = L(x^{-m})$$

= $L(\frac{1}{x^{m}})$
= $L(1) - L(x^{m})$ (by result (4))
= $0 - L(x^{m})$ (by result (1))
= $-mL(x)$ (by Case(i))
= $nL(x)$

Case(iii): $n = \frac{1}{m}$. Let $x^{1/m} = y$. (i.e.) $y^m = x$.

$$L(x) = L(y^m)$$

= $mL(y)$ (by Case (i) and (ii))
$$\Rightarrow \frac{1}{m}L(x) = L(y)$$

$$\Rightarrow L(y) = \frac{1}{m}L(x)$$

$$\Rightarrow L(x^{1/m}) = \frac{1}{m}L(x)$$

$$\Rightarrow L(x^n) = nL(x)$$

Case(iv):
$$n = p/q$$

$$L(x^{n}) = L(x^{p/q})$$

= $L(x^{1/q})^{p}$
= $pL(x^{1/q})$ (by Case (i) and (ii))
= $p\frac{1}{q}L(x)$ (by Case (iii))
 $L(x^{n}) = nL(x)$

(7) $x^n = E(nL(x)).$ **Proof:** $E(nL(x)) = E(L(x^n))$ (by (6)) $=x^n$ (8) $(x^{\alpha})' = \alpha x^{\alpha-1}.$ **Proof:** $x^{\alpha} = E(\alpha L(x))$ Differentiate w.r.t x, we get

$$(x^{\alpha})' = E'(\alpha L(x)) \cdot \alpha L'(x)$$
$$= E(\alpha L(x)) \cdot \alpha \frac{1}{x}$$
$$= \alpha x^{\alpha - 1}$$
$$(x^{\alpha})' = \alpha x^{\alpha - 1}$$

(9) $\lim_{x\to\infty} x^{-\alpha} \log x = 0.$ **Proof:** Let $0 < E < \alpha.$

$$\begin{aligned} x^{-\alpha} \log x &= x^{-\alpha} \int_{1}^{x} \frac{1}{t} dt \\ &= x^{-\alpha} \int_{1}^{x} t^{-1} dt \\ &< x^{-\alpha} \int_{1}^{x} t^{\epsilon - 1} dt \ (\because \epsilon - 1 > -1) \\ &= x^{-\alpha} (\frac{t^{\epsilon}}{\epsilon})_{1}^{x} \\ &= x^{-\alpha} (\frac{x^{\epsilon}}{\epsilon} - \frac{1}{\epsilon}) \\ &< \frac{x \alpha^{\epsilon - \alpha}}{\epsilon} \to 0 asx \to \infty \end{aligned}$$

 $\therefore \lim_{x \to \infty} x^{-\alpha} \log x = 0.$

The Trignometric functions

Definition 5.28

$$C(x) = \frac{E(ix) + E(-ix)}{2}$$
$$S(x) = \frac{E(ix) - E(-ix)}{2i}$$

Result 5.29 (1) C(x) and S(x) are real if x is real. **Proof:**

$$\begin{split} E(ix) &= 1 + \frac{(ix)}{1!} + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \dots \\ &= 1 + \frac{ix}{1!} - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + \dots \quad \dots \dots (1) \\ E(-ix) &= 1 + \frac{(-ix)}{1!} + \frac{(-ix)^2}{2!} + \frac{(-ix)^3}{3!} + \frac{(-ix)^4}{4!} + \dots \\ &= 1 - \frac{ix}{1!} - \frac{x^2}{2!} + \frac{ix^3}{3!} + \frac{x^4}{4!} + \dots \quad \dots \dots (2) \end{split}$$

(1)+(2)

$$\Rightarrow E(ix) + E(-ix) = 2\left\{1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right\}$$
$$\frac{E(ix) + E(-ix)}{2} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
$$C(x) = \frac{E(ix) + E(-ix)}{2}$$

 \therefore C(x) is real if x is real. (1)-(2)

$$\begin{split} \Rightarrow E(ix) - E(-ix) &= 2\left\{\frac{ix}{1!} - \frac{x^2}{2!} - \frac{ix^3}{3!} + \dots\right\} \\ \Rightarrow \frac{E(ix) - E(-ix)}{2} &= \left\{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots\right\} \\ \Rightarrow S(x) &= \frac{E(ix) - E(-ix)}{2} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \end{split}$$

 $\therefore S(x)$ is real when x is real. (2) E(ix) = C(x) + iS(x). **Proof:**

$$C(x) + iS(x) = \frac{E(ix) + E(-ix)}{2} + i\frac{E(ix) - E(-ix)}{2i}$$

= $\frac{2E(ix)}{2}$
= $E(ix).$

(3) $\overline{E(z)} = E(\bar{z}).$ (4) |E(ix)| = 1.

Proof:

$$|E(ix)|^{2} = E(ix)\overline{E(ix)}$$
$$= E(ix)E(-ix)$$
$$= E(ix - ix)$$
$$= E(0)$$
$$|E(ix)|^{2} = 1$$
$$|E(ix)| = 1$$

(5) C(0) = 1, S(0) = 0 and C'(x) = -S(x), S'(x) = C(x). **Proof:**

$$C(x) = \frac{E(ix) + E(-ix)}{2}$$

$$C(0) = \frac{E(0) + E(0)}{2}$$

$$= \frac{1+1}{2}$$

$$= 1$$

$$S(x) = \frac{E(ix) - E(-ix)}{2}$$

$$S(0) = \frac{E(0) + E(0)}{2i}$$

$$= \frac{1-1}{2i}$$

$$= 0.$$

$$C(x) = \frac{E(ix) + E(-ix)}{2}$$

$$C'(x) = \frac{E'(ix)i + E'(-ix)(-i)}{2}$$

$$= \frac{i(E(ix) - E(-ix))}{2}$$

$$= \frac{i^2}{i} \frac{(E(ix) - E(-ix))}{2i}$$

$$= \frac{-S(x)}{2i}$$

$$S(x) = \frac{E'(ix)i + E'(-ix)(-i)}{2i}$$

$$= \frac{i(E(ix) - E(-ix))}{2i}$$
$$= \frac{E(ix) + E(-ix)}{2}$$
$$S'(x) = C(x)$$

(6) There exists positive numbers x such that C(x) = 0. **Proof:** Suppose there is no such real number x. Since C(0) = 1, we get $C(x) > 0 \quad \forall x$. (i.e.) $S'(x) > 0, \quad \forall x \Rightarrow S(x)$ is an increasing function. $\therefore 0 < x \Rightarrow S(0) < S(x)$ (or) $S(x) > 0 \quad \forall x > 0$. Let 0 < x < t < y.

$$\Rightarrow S(x) < S(t)$$

$$\Rightarrow \int_{x}^{y} S(x)dt < \int_{x}^{y} S(t)dt$$

$$\Rightarrow S(x)(y-x) < (-C(t))_{x}^{y}$$

$$< C(x) - C(y)$$

$$\leq |C(x) - C(y)| \leq |C(x)| - |C(y)|$$

$$\leq 1 + 1$$

$$S(x)(y-x) \leq 2.....(1)$$

Since S(x) > 0, inequality (1) does not hold for larger value of y. This contradiction proves the assertion. \therefore There exist positive numbers x such that C(x) = 0.

Course Material Prepared by **Dr. S. PIOUS MISSIER** Associate Professor, P.G. and Research Department of Mathematics V. O. Chidambaram College, Tuticorin - 628 008.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.